Python modules for machine learning and data mining
scikits.learn is a python module for machine learning built on top of scipy.
- Devel package for openSUSE:Factory
-
4
derived packages
- Links to openSUSE:Factory / python-scikit-learn
- Download package
-
Checkout Package
osc -A https://api.opensuse.org checkout devel:languages:python:numeric/python-scikit-learn && cd $_
- Create Badge
Refresh
Refresh
Source Files
Filename | Size | Changed |
---|---|---|
_link | 0000000154 154 Bytes | |
_multibuild | 0000000154 154 Bytes | |
python-scikit-learn.changes | 0000093869 91.7 KB | |
python-scikit-learn.spec | 0000004735 4.62 KB | |
scikit-learn-1.4.1.post1.tar.gz | 0007743688 7.38 MB |
Revision 61 (latest revision is 78)
Markéta Machová (mcalabkova)
accepted
request 1148118
from
Benjamin Greiner (bnavigator)
(revision 61)
- Update to 1.4.1.post1 ## Metadata Routing * Fix routing issue with ColumnTransformer when used inside another meta-estimator. #28188 by Adrin Jalali. * No error is raised when no metadata is passed to a metaestimator that includes a sub-estimator which doesn’t support metadata routing. #28256 by Adrin Jalali. * Fix multioutput.MultiOutputRegressor and multioutput.MultiOutputClassifier to work with estimators that don’t consume any metadata when metadata routing is enabled. #28240 by Adrin Jalali. ## DataFrame Support * Enhancement Fix Pandas and Polars dataframe are validated directly without ducktyping checks. #28195 by Thomas Fan. ## Changes impacting many modules * Efficiency Fix Partial revert of #28191 to avoid a performance regression for estimators relying on euclidean pairwise computation with sparse matrices. The impacted estimators are: - sklearn.metrics.pairwise_distances_argmin - sklearn.metrics.pairwise_distances_argmin_min - sklearn.cluster.AffinityPropagation - sklearn.cluster.Birch - sklearn.cluster.SpectralClustering - sklearn.neighbors.KNeighborsClassifier - sklearn.neighbors.KNeighborsRegressor - sklearn.neighbors.RadiusNeighborsClassifier - sklearn.neighbors.RadiusNeighborsRegressor - sklearn.neighbors.LocalOutlierFactor - sklearn.neighbors.NearestNeighbors - sklearn.manifold.Isomap - sklearn.manifold.TSNE - sklearn.manifold.trustworthiness - #28235 by Julien Jerphanion. * Fixes a bug for all scikit-learn transformers when using set_output with transform set to pandas or polars. The bug could lead to wrong naming of the columns of the returned dataframe. #28262 by Guillaume Lemaitre. * When users try to use a method in StackingClassifier, StackingClassifier, StackingClassifier, SelectFromModel, RFE, SelfTrainingClassifier, OneVsOneClassifier, OutputCodeClassifier or OneVsRestClassifier that their sub-estimators don’t implement, the AttributeError now reraises in the traceback. #28167 by Stefanie Senger. - Release 1.4.0 * HistGradientBoosting Natively Supports Categorical DTypes in DataFrames * Polars output in set_output * Missing value support for Random Forest * Add support for monotonic constraints in tree-based models * Enriched estimator displays * Metadata Routing Support * Improved memory and runtime efficiency for PCA on sparse data * Highlights and detailed changelog: * https://scikit-learn.org/stable/auto_examples/release_highlights/plot_release_highlights_1_4_0.html * https://scikit-learn.org/stable/whats_new/v1.4.html#release-notes-1-4 - Enable python312 test flavor, avoid testing it with the other flavors - Prepare for python39 flavor drop
Comments 0