Sign Up
Log In
Log In
or
Sign Up
Places
All Projects
Status Monitor
Collapse sidebar
Base:System
grub
grub-password-sha2-crypt
Overview
Repositories
Revisions
Requests
Users
Attributes
Meta
File grub-password-sha2-crypt of Package grub
From 4f3b67c287e15a0b81a8d93816b22df3f41f4ca7 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Miloslav=20Trma=C4=8D?= <mitr@redhat.com> Date: Tue, 12 Jan 2010 13:26:36 -0500 Subject: [PATCH] Add SHA-2 support This patch adds sha-2 support. The "password" commands gets a new option --encrypted (generic for all formats, handles MD5, SHA-256, SHA-512). A new utility, grub-crypt (written in Python) can be used to create the encrypted passwords; an internal GRUB command corresponding to "md5crypt" is not provided. Tested on i386 build (including the #ifdef-ed out built-in tests in the sha*crypt.c files). x86_64 build currently fails both on F12 and rawhide, apparently because there is no glibc-static.i686 available in the x86_64 repositories. To test: * Keep existing "password --md5", verify passwords are handled correctly. * For $format in "--md5", "--sha-256", "--sha-512": * Use (grub-crypt $format) to generate an encrypted password * Add "password --encrypted the_generated_password" to grub.conf * Verify the password is handled correctly. --- configure.in | 4 +- docs/Makefile.am | 9 +- docs/grub-crypt.8 | 39 +++ docs/grub.texi | 55 +++-- stage2/Makefile.am | 12 +- stage2/builtins.c | 31 ++- stage2/char_io.c | 20 ++ stage2/sha256crypt.c | 723 +++++++++++++++++++++++++++++++++++++++++++++ stage2/sha512crypt.c | 795 ++++++++++++++++++++++++++++++++++++++++++++++++++ stage2/shared.h | 6 + util/Makefile.am | 4 +- util/grub-crypt.in | 80 +++++ 12 files changed, 1747 insertions(+), 31 deletions(-) create mode 100644 docs/grub-crypt.8 create mode 100644 stage2/sha256crypt.c create mode 100644 stage2/sha512crypt.c create mode 100644 util/grub-crypt.in --- a/configure.ac +++ b/configure.ac @@ -666,7 +666,7 @@ AC_SUBST(CCASFLAGS) dnl Output. AC_CONFIG_FILES([Makefile stage1/Makefile stage2/Makefile \ docs/Makefile lib/Makefile util/Makefile \ - grub/Makefile netboot/Makefile util/grub-image \ - util/grub-install util/grub-md5-crypt \ + grub/Makefile netboot/Makefile util/grub-crypt \ + util/grub-image util/grub-install util/grub-md5-crypt \ util/grub-terminfo util/grub-set-default]) AC_OUTPUT --- a/docs/Makefile.am +++ b/docs/Makefile.am @@ -2,7 +2,8 @@ info_TEXINFOS = grub.texi multiboot.texi grub_TEXINFOS = internals.texi EXAMPLES = boot.S kernel.c multiboot.h multiboot_TEXINFOS = boot.S.texi kernel.c.texi multiboot.h.texi -man_MANS = grub.8 mbchk.1 grub-install.8 grub-md5-crypt.8 grub-terminfo.8 +man_MANS = grub.8 mbchk.1 grub-crypt.8 grub-install.8 grub-md5-crypt.8 \ + grub-terminfo.8 HELP2MAN = help2man SRC2TEXI = src2texi noinst_SCRIPTS = $(HELP2MAN) $(SRC2TEXI) @@ -51,6 +52,12 @@ $(srcdir)/mbchk.1: ../util/mbchk $(srcdi --name="check the format of a Multiboot kernel" \ --section=1 --output=$@ $< +$(srcdir)/grub-crypt.8: ../util/grub-crypt $(srcdir)/$(HELP2MAN) + chmod 755 $< + $(PERL) $(srcdir)/$(HELP2MAN) \ + --name="Encrypt a password" \ + --section=8 --output=$@ $< + $(srcdir)/grub-md5-crypt.8: ../util/grub-md5-crypt $(srcdir)/$(HELP2MAN) chmod 755 $< $(PERL) $(srcdir)/$(HELP2MAN) \ --- /dev/null +++ b/docs/grub-crypt.8 @@ -0,0 +1,39 @@ +.\" DO NOT MODIFY THIS FILE! It was generated by help2man 1.23. +.TH GRUB-CRYPT "1" "January 2010" "grub-crypt (GNU GRUB 0.97)" FSF +.SH NAME +grub-crypt \- manual page for grub-crypt (GNU GRUB 0.97) +.SH SYNOPSIS +.B grub-crypt +[\fIOPTION\fR]... +.SH DESCRIPTION +Encrypt a password. +.TP +\fB\-h\fR, \fB\-\-help\fR +Print this message and exit +.TP +\fB\-v\fR, \fB\-\-version\fR +Print the version information and exit +.TP +\fB\-\-md5\fR +Use MD5 to encrypt the password +.TP +\fB\-\-sha\-256\fR +Use SHA-256 to encrypt the password +.TP +\fB\-\-sha\-512\fR +Use SHA-512 to encrypt the password (default) +.SH "REPORTING BUGS" +Report bugs to <bug-grub@gnu.org>. +EOF +.SH "SEE ALSO" +The full documentation for +.B grub-crypt +is maintained as a Texinfo manual. If the +.B info +and +.B grub-crypt +programs are properly installed at your site, the command +.IP +.B info grub-crypt +.PP +should give you access to the complete manual. --- a/docs/grub.texi +++ b/docs/grub.texi @@ -21,6 +21,7 @@ @dircategory Kernel @direntry * GRUB: (grub). The GRand Unified Bootloader +* grub-crypt: (grub)Invoking grub-crypt. Encrypt a password * grub-install: (grub)Invoking grub-install. Install GRUB on your drive * grub-md5-crypt: (grub)Invoking grub-md5-crypt. Encrypt a password in MD5 format @@ -115,8 +116,9 @@ This edition documents version @value{VE * Commands:: The list of available builtin commands * Troubleshooting:: Error messages produced by GRUB * Invoking the grub shell:: How to use the grub shell +* Invoking grub-crypt:: How to generate an encrypted password * Invoking grub-install:: How to use the GRUB installer -* Invoking grub-md5-crypt:: How to generate a cryptic password +* Invoking grub-md5-crypt:: How to generate an MD5-encrypted password * Invoking grub-terminfo:: How to generate a terminfo command * Invoking grub-set-default:: How to set a default boot entry * Invoking mbchk:: How to use the Multiboot checker @@ -1685,27 +1687,17 @@ run the command @command{password} in yo (@pxref{password}), like this: @example -password --md5 PASSWORD +password --encrypted PASSWORD @end example If this is specified, GRUB disallows any interactive control, until you press the key @key{p} and enter a correct password. The option -@option{--md5} tells GRUB that @samp{PASSWORD} is in MD5 format. If it +@option{--encrypted} tells GRUB that @samp{PASSWORD} is encrypted format. If it is omitted, GRUB assumes the @samp{PASSWORD} is in clear text. -You can encrypt your password with the command @command{md5crypt} -(@pxref{md5crypt}). For example, run the grub shell (@pxref{Invoking the -grub shell}), and enter your password: - -@example -@group -grub> md5crypt -Password: ********** -Encrypted: $1$U$JK7xFegdxWH6VuppCUSIb. -@end group -@end example - -Then, cut and paste the encrypted password to your configuration file. +You can encrypt your password with the program @command{grub-crypt} +(@pxref{Invoking grub-crypt}). Then, cut and paste the encrypted password to +your configuration file. Also, you can specify an optional argument to @command{password}. See this example: @@ -2408,7 +2400,7 @@ is the new partition type and must be a @node password @subsection password -@deffn Command password [@option{--md5}] passwd [new-config-file] +@deffn Command password [@option{--md5}] [@option{--encrypted}] passwd [new-config-file] If used in the first section of a menu file, disable all interactive editing control (menu entry editor and command-line) and entries protected by the command @command{lock}. If the password @var{passwd} is @@ -2418,7 +2410,9 @@ specified. Otherwise, GRUB will just unl You can also use this command in the script section, in which case it will ask for the password, before continuing. The option @option{--md5} tells GRUB that @var{passwd} is encrypted with -@command{md5crypt} (@pxref{md5crypt}). +@command{md5crypt} (@pxref{md5crypt}), the option @option{--encrypted} +tells GRUB that @var{passwd} is using one of the crypt formats (GRUB currently +supports MD5, SHA-256 and SHA-512 encryption). @end deffn @@ -3670,6 +3664,31 @@ comments in the file if needed, as the g just a comment if the first character is @samp{#}. +@node Invoking grub-crypt +@chapter Invoking grub-crypt + +The program @command{grub-crypt} encrypts a password in one of the specified +formats. Passwords encrypted by this program can be used with the +command @command{password} (@pxref{password}). + +@command{grub-crypt} accepts the following options: + +@table @option +@item --help +Print a summary of the command-line options and exit. + +@item --version +Print the version information and exit. + +@item --md5 +Use MD5 for password encryption. +@item --sha-256 +Use SHA-256 for password encryption. +@item --sha-512 +Use SHA-512 for password encryption. This is the default. +@end table + + @node Invoking grub-install @chapter Invoking grub-install --- a/stage2/Makefile.am +++ b/stage2/Makefile.am @@ -18,8 +18,8 @@ noinst_LIBRARIES = libgrub.a libgrub_a_SOURCES = boot.c builtins.c char_io.c cmdline.c common.c \ disk_io.c fsys_ext2fs.c fsys_fat.c fsys_ffs.c fsys_iso9660.c \ fsys_jfs.c fsys_minix.c fsys_reiserfs.c fsys_ufs2.c \ - fsys_vstafs.c fsys_xfs.c gunzip.c md5.c serial.c stage2.c \ - terminfo.c tparm.c + fsys_vstafs.c fsys_xfs.c gunzip.c md5.c serial.c sha256crypt.c \ + sha512crypt.c stage2.c terminfo.c tparm.c libgrub_a_CFLAGS = $(GRUB_CFLAGS) -I$(top_srcdir)/lib \ -DGRUB_UTIL=1 -DFSYS_EXT2FS=1 -DFSYS_FAT=1 -DFSYS_FFS=1 \ -DFSYS_ISO9660=1 -DFSYS_JFS=1 -DFSYS_MINIX=1 -DFSYS_REISERFS=1 \ @@ -91,7 +91,8 @@ pre_stage2_exec_SOURCES = asm.S bios.c b cmdline.c common.c console.c disk_io.c fsys_ext2fs.c \ fsys_fat.c fsys_ffs.c fsys_iso9660.c fsys_jfs.c fsys_minix.c \ fsys_reiserfs.c fsys_ufs2.c fsys_vstafs.c fsys_xfs.c gunzip.c \ - hercules.c md5.c serial.c smp-imps.c stage2.c terminfo.c tparm.c + hercules.c md5.c serial.c sha256crypt.c sha512crypt.c smp-imps.c \ + stage2.c terminfo.c tparm.c pre_stage2_exec_CFLAGS = $(STAGE2_COMPILE) $(FSYS_CFLAGS) pre_stage2_exec_CCASFLAGS = $(STAGE2_COMPILE) $(FSYS_CFLAGS) pre_stage2_exec_LDFLAGS = $(PRE_STAGE2_LINK) --- a/stage2/builtins.c +++ b/stage2/builtins.c @@ -119,6 +119,27 @@ check_password (char *entered, char* exp case PASSWORD_MD5: return check_md5_password (entered, expected); #endif + + case PASSWORD_ENCRYPTED: + if (grub_memcmp (expected, "$1$", 3) == 0) + return check_md5_password (entered, expected); + else if (grub_memcmp (expected, "$5$", 3) == 0) + { + char *hashed; + + hashed = sha256_crypt (entered, expected); + return hashed == NULL || strcmp (expected, hashed); + } + else if (grub_memcmp (expected, "$6$", 3) == 0) + { + char *hashed; + + hashed = sha512_crypt (entered, expected); + return hashed == NULL || strcmp (expected, hashed); + } + else + return strcmp (entered, expected); + default: /* unsupported password type: be secure */ return 1; @@ -2973,6 +2994,11 @@ password_func (char *arg, int flags) arg = skip_to (0, arg); } #endif + else if (grub_memcmp (arg, "--encrypted", 5) == 0) + { + type = PASSWORD_ENCRYPTED; + arg = skip_to (0, arg); + } if (grub_memcmp (arg, "--", 2) == 0) { type = PASSWORD_UNSUPPORTED; @@ -3020,7 +3046,7 @@ static struct builtin builtin_password = "password", password_func, BUILTIN_MENU | BUILTIN_CMDLINE | BUILTIN_NO_ECHO, - "password [--md5] PASSWD [FILE]", + "password [--md5|--encrypted] PASSWD [FILE]", "If used in the first section of a menu file, disable all" " interactive editing control (menu entry editor and" " command line). If the password PASSWD is entered, it loads the" @@ -3029,7 +3055,8 @@ static struct builtin builtin_password = " instructions. You can also use it in the script section, in" " which case it will ask for the password, before continueing." " The option --md5 tells GRUB that PASSWD is encrypted with" - " md5crypt." + " md5crypt, --encrypted that PASSWD is encrypted (with algorithm" + " specified in PASSWD: supported is md5, sha-256, sha-512)." }; --- a/stage2/char_io.c +++ b/stage2/char_io.c @@ -1274,6 +1274,26 @@ grub_strcpy (char *dest, const char *src grub_memmove (dest, src, grub_strlen (src) + 1); return dest; } + +char * +grub_stpncpy (char *dest, const char *src, int n) +{ + char *res; + + res = NULL; + while (n != 0) { + *dest = *src; + if (*src != 0) + src++; + else if (res == NULL) + res = dest; + dest++; + n--; + } + if (res == NULL) + res = dest; + return res; +} #endif /* ! STAGE1_5 */ #ifndef GRUB_UTIL --- /dev/null +++ b/stage2/sha256crypt.c @@ -0,0 +1,721 @@ +/* SHA256-based Unix crypt implementation. + Released into the Public Domain by Ulrich Drepper <drepper@redhat.com>. + Adapted for grub by Miloslav Trmac <mitr@redhat.com>. */ + +#include <shared.h> + +typedef unsigned int uint32_t; +typedef unsigned long grub_size_t; +typedef unsigned int uintptr_t; +#define alloca(SIZE) (__builtin_alloca (SIZE)) +#define MIN(A, B) ((A) < (B) ? (A) : (B)) +#define MAX(A, B) ((A) > (B) ? (A) : (B)) + +/* Structure to save state of computation between the single steps. */ +struct sha256_ctx +{ + uint32_t H[8]; + + uint32_t total[2]; + uint32_t buflen; + char buffer[128]; /* NB: always correctly aligned for uint32_t. */ +}; + + +#if 1 /* __BYTE_ORDER == __LITTLE_ENDIAN */ +# define SWAP(n) \ + (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24)) +#else +# define SWAP(n) (n) +#endif + + +/* This array contains the bytes used to pad the buffer to the next + 64-byte boundary. (FIPS 180-2:5.1.1) */ +static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ }; + + +/* Constants for SHA256 from FIPS 180-2:4.2.2. */ +static const uint32_t K[64] = + { + 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, + 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, + 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, + 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, + 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, + 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, + 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, + 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, + 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, + 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, + 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, + 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, + 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, + 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, + 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, + 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 + }; + + +/* Process LEN bytes of BUFFER, accumulating context into CTX. + It is assumed that LEN % 64 == 0. */ +static void +sha256_process_block (const void *buffer, grub_size_t len, struct sha256_ctx *ctx) +{ + const uint32_t *words = buffer; + grub_size_t nwords = len / sizeof (uint32_t); + uint32_t a = ctx->H[0]; + uint32_t b = ctx->H[1]; + uint32_t c = ctx->H[2]; + uint32_t d = ctx->H[3]; + uint32_t e = ctx->H[4]; + uint32_t f = ctx->H[5]; + uint32_t g = ctx->H[6]; + uint32_t h = ctx->H[7]; + + /* First increment the byte count. FIPS 180-2 specifies the possible + length of the file up to 2^64 bits. Here we only compute the + number of bytes. Do a double word increment. */ + ctx->total[0] += len; + if (ctx->total[0] < len) + ++ctx->total[1]; + + /* Process all bytes in the buffer with 64 bytes in each round of + the loop. */ + while (nwords > 0) + { + uint32_t W[64]; + uint32_t a_save = a; + uint32_t b_save = b; + uint32_t c_save = c; + uint32_t d_save = d; + uint32_t e_save = e; + uint32_t f_save = f; + uint32_t g_save = g; + uint32_t h_save = h; + unsigned int t; + + /* Operators defined in FIPS 180-2:4.1.2. */ +#define Ch(x, y, z) ((x & y) ^ (~x & z)) +#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z)) +#define S0(x) (CYCLIC (x, 2) ^ CYCLIC (x, 13) ^ CYCLIC (x, 22)) +#define S1(x) (CYCLIC (x, 6) ^ CYCLIC (x, 11) ^ CYCLIC (x, 25)) +#define R0(x) (CYCLIC (x, 7) ^ CYCLIC (x, 18) ^ (x >> 3)) +#define R1(x) (CYCLIC (x, 17) ^ CYCLIC (x, 19) ^ (x >> 10)) + + /* It is unfortunate that C does not provide an operator for + cyclic rotation. Hope the C compiler is smart enough. */ +#define CYCLIC(w, s) ((w >> s) | (w << (32 - s))) + + /* Compute the message schedule according to FIPS 180-2:6.2.2 step 2. */ + for (t = 0; t < 16; ++t) + { + W[t] = SWAP (*words); + ++words; + } + for (t = 16; t < 64; ++t) + W[t] = R1 (W[t - 2]) + W[t - 7] + R0 (W[t - 15]) + W[t - 16]; + + /* The actual computation according to FIPS 180-2:6.2.2 step 3. */ + for (t = 0; t < 64; ++t) + { + uint32_t T1 = h + S1 (e) + Ch (e, f, g) + K[t] + W[t]; + uint32_t T2 = S0 (a) + Maj (a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + } + + /* Add the starting values of the context according to FIPS 180-2:6.2.2 + step 4. */ + a += a_save; + b += b_save; + c += c_save; + d += d_save; + e += e_save; + f += f_save; + g += g_save; + h += h_save; + + /* Prepare for the next round. */ + nwords -= 16; + } + + /* Put checksum in context given as argument. */ + ctx->H[0] = a; + ctx->H[1] = b; + ctx->H[2] = c; + ctx->H[3] = d; + ctx->H[4] = e; + ctx->H[5] = f; + ctx->H[6] = g; + ctx->H[7] = h; +} + + +/* Initialize structure containing state of computation. + (FIPS 180-2:5.3.2) */ +static void +sha256_init_ctx (struct sha256_ctx *ctx) +{ + ctx->H[0] = 0x6a09e667; + ctx->H[1] = 0xbb67ae85; + ctx->H[2] = 0x3c6ef372; + ctx->H[3] = 0xa54ff53a; + ctx->H[4] = 0x510e527f; + ctx->H[5] = 0x9b05688c; + ctx->H[6] = 0x1f83d9ab; + ctx->H[7] = 0x5be0cd19; + + ctx->total[0] = ctx->total[1] = 0; + ctx->buflen = 0; +} + + +/* Process the remaining bytes in the internal buffer and the usual + prolog according to the standard and write the result to RESBUF. + + IMPORTANT: On some systems it is required that RESBUF is correctly + aligned for a 32 bits value. */ +static void * +sha256_finish_ctx (struct sha256_ctx *ctx, void *resbuf) +{ + /* Take yet unprocessed bytes into account. */ + uint32_t bytes = ctx->buflen; + grub_size_t pad; + unsigned int i; + + /* Now count remaining bytes. */ + ctx->total[0] += bytes; + if (ctx->total[0] < bytes) + ++ctx->total[1]; + + pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes; + memcpy (&ctx->buffer[bytes], fillbuf, pad); + + /* Put the 64-bit file length in *bits* at the end of the buffer. */ + *(uint32_t *) &ctx->buffer[bytes + pad + 4] = SWAP (ctx->total[0] << 3); + *(uint32_t *) &ctx->buffer[bytes + pad] = SWAP ((ctx->total[1] << 3) | + (ctx->total[0] >> 29)); + + /* Process last bytes. */ + sha256_process_block (ctx->buffer, bytes + pad + 8, ctx); + + /* Put result from CTX in first 32 bytes following RESBUF. */ + for (i = 0; i < 8; ++i) + ((uint32_t *) resbuf)[i] = SWAP (ctx->H[i]); + + return resbuf; +} + + +static void +sha256_process_bytes (const void *buffer, grub_size_t len, struct sha256_ctx *ctx) +{ + /* When we already have some bits in our internal buffer concatenate + both inputs first. */ + if (ctx->buflen != 0) + { + grub_size_t left_over = ctx->buflen; + grub_size_t add = 128 - left_over > len ? len : 128 - left_over; + + memcpy (&ctx->buffer[left_over], buffer, add); + ctx->buflen += add; + + if (ctx->buflen > 64) + { + sha256_process_block (ctx->buffer, ctx->buflen & ~63, ctx); + + ctx->buflen &= 63; + /* The regions in the following copy operation cannot overlap. */ + memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~63], + ctx->buflen); + } + + buffer = (const char *) buffer + add; + len -= add; + } + + /* Process available complete blocks. */ + if (len >= 64) + { +/* To check alignment gcc has an appropriate operator. Other + compilers don't. */ +#if __GNUC__ >= 2 +# define UNALIGNED_P(p) (((uintptr_t) p) % __alignof__ (uint32_t) != 0) +#else +# define UNALIGNED_P(p) (((uintptr_t) p) % sizeof (uint32_t) != 0) +#endif + if (UNALIGNED_P (buffer)) + while (len > 64) + { + sha256_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx); + buffer = (const char *) buffer + 64; + len -= 64; + } + else + { + sha256_process_block (buffer, len & ~63, ctx); + buffer = (const char *) buffer + (len & ~63); + len &= 63; + } + } + + /* Move remaining bytes into internal buffer. */ + if (len > 0) + { + grub_size_t left_over = ctx->buflen; + + memcpy (&ctx->buffer[left_over], buffer, len); + left_over += len; + if (left_over >= 64) + { + sha256_process_block (ctx->buffer, 64, ctx); + left_over -= 64; + memcpy (ctx->buffer, &ctx->buffer[64], left_over); + } + ctx->buflen = left_over; + } +} + + +/* Define our magic string to mark salt for SHA256 "encryption" + replacement. */ +static const char sha256_salt_prefix[] = "$5$"; + +/* Prefix for optional rounds specification. */ +static const char sha256_rounds_prefix[] = "rounds="; + +/* Maximum salt string length. */ +#define SALT_LEN_MAX 16 +/* Default number of rounds if not explicitly specified. */ +#define ROUNDS_DEFAULT 5000 +/* Minimum number of rounds. */ +#define ROUNDS_MIN 1000 +/* Maximum number of rounds. */ +#define ROUNDS_MAX 999999999 + +/* Table with characters for base64 transformation. */ +static const char b64t[64] = +"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; + + +static char * +sha256_crypt_r (const char *key, const char *salt, char *buffer, int buflen) +{ + unsigned char alt_result[32] + __attribute__ ((__aligned__ (__alignof__ (uint32_t)))); + unsigned char temp_result[32] + __attribute__ ((__aligned__ (__alignof__ (uint32_t)))); + struct sha256_ctx ctx; + struct sha256_ctx alt_ctx; + grub_size_t salt_len; + grub_size_t key_len; + grub_size_t cnt; + char *cp; + char *copied_key = NULL; + char *copied_salt = NULL; + char *p_bytes; + char *s_bytes; + /* Default number of rounds. */ + grub_size_t rounds = ROUNDS_DEFAULT; + int rounds_custom = 0; + + /* Find beginning of salt string. The prefix should normally always + be present. Just in case it is not. */ + if (grub_memcmp (sha256_salt_prefix, salt, + sizeof (sha256_salt_prefix) - 1) == 0) + /* Skip salt prefix. */ + salt += sizeof (sha256_salt_prefix) - 1; + + if (grub_memcmp (salt, sha256_rounds_prefix, + sizeof (sha256_rounds_prefix) - 1) == 0) + { + const char *num = salt + sizeof (sha256_rounds_prefix) - 1; + char *endp = (char *)num; + int srounds = 0; + if (*endp == '0' && tolower (endp[1]) == 'x') + /* This would be interpreted as hexadecimal by safe_parse_maxint(). */ + endp++; + else + /* On error, endp and srounds is not changed. */ + safe_parse_maxint(&endp, &srounds); + if (*endp == '$') + { + salt = endp + 1; + rounds = MAX (ROUNDS_MIN, MIN (srounds, ROUNDS_MAX)); + rounds_custom = 1; + } + } + + salt_len = MIN (strstr (salt, "$")-salt, SALT_LEN_MAX); + key_len = strlen (key); + + if ((key - (char *) 0) % __alignof__ (uint32_t) != 0) + { + char *tmp = (char *) alloca (key_len + __alignof__ (uint32_t)); + key = copied_key = + memcpy (tmp + __alignof__ (uint32_t) + - (tmp - (char *) 0) % __alignof__ (uint32_t), + key, key_len); + } + + if ((salt - (char *) 0) % __alignof__ (uint32_t) != 0) + { + char *tmp = (char *) alloca (salt_len + __alignof__ (uint32_t)); + salt = copied_salt = + memcpy (tmp + __alignof__ (uint32_t) + - (tmp - (char *) 0) % __alignof__ (uint32_t), + salt, salt_len); + } + + /* Prepare for the real work. */ + sha256_init_ctx (&ctx); + + /* Add the key string. */ + sha256_process_bytes (key, key_len, &ctx); + + /* The last part is the salt string. This must be at most 16 + characters and it ends at the first `$' character (for + compatibility with existing implementations). */ + sha256_process_bytes (salt, salt_len, &ctx); + + + /* Compute alternate SHA256 sum with input KEY, SALT, and KEY. The + final result will be added to the first context. */ + sha256_init_ctx (&alt_ctx); + + /* Add key. */ + sha256_process_bytes (key, key_len, &alt_ctx); + + /* Add salt. */ + sha256_process_bytes (salt, salt_len, &alt_ctx); + + /* Add key again. */ + sha256_process_bytes (key, key_len, &alt_ctx); + + /* Now get result of this (32 bytes) and add it to the other + context. */ + sha256_finish_ctx (&alt_ctx, alt_result); + + /* Add for any character in the key one byte of the alternate sum. */ + for (cnt = key_len; cnt > 32; cnt -= 32) + sha256_process_bytes (alt_result, 32, &ctx); + sha256_process_bytes (alt_result, cnt, &ctx); + + /* Take the binary representation of the length of the key and for every + 1 add the alternate sum, for every 0 the key. */ + for (cnt = key_len; cnt > 0; cnt >>= 1) + if ((cnt & 1) != 0) + sha256_process_bytes (alt_result, 32, &ctx); + else + sha256_process_bytes (key, key_len, &ctx); + + /* Create intermediate result. */ + sha256_finish_ctx (&ctx, alt_result); + + /* Start computation of P byte sequence. */ + sha256_init_ctx (&alt_ctx); + + /* For every character in the password add the entire password. */ + for (cnt = 0; cnt < key_len; ++cnt) + sha256_process_bytes (key, key_len, &alt_ctx); + + /* Finish the digest. */ + sha256_finish_ctx (&alt_ctx, temp_result); + + /* Create byte sequence P. */ + cp = p_bytes = alloca (key_len); + for (cnt = key_len; cnt >= 32; cnt -= 32) + { + memcpy (cp, temp_result, 32); + cp += 32; + } + memcpy (cp, temp_result, cnt); + + /* Start computation of S byte sequence. */ + sha256_init_ctx (&alt_ctx); + + /* For every character in the password add the entire password. */ + for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt) + sha256_process_bytes (salt, salt_len, &alt_ctx); + + /* Finish the digest. */ + sha256_finish_ctx (&alt_ctx, temp_result); + + /* Create byte sequence S. */ + cp = s_bytes = alloca (salt_len); + for (cnt = salt_len; cnt >= 32; cnt -= 32) + { + memcpy (cp, temp_result, 32); + cp += 32; + } + memcpy (cp, temp_result, cnt); + + /* Repeatedly run the collected hash value through SHA256 to burn + CPU cycles. */ + for (cnt = 0; cnt < rounds; ++cnt) + { + /* New context. */ + sha256_init_ctx (&ctx); + + /* Add key or last result. */ + if ((cnt & 1) != 0) + sha256_process_bytes (p_bytes, key_len, &ctx); + else + sha256_process_bytes (alt_result, 32, &ctx); + + /* Add salt for numbers not divisible by 3. */ + if (cnt % 3 != 0) + sha256_process_bytes (s_bytes, salt_len, &ctx); + + /* Add key for numbers not divisible by 7. */ + if (cnt % 7 != 0) + sha256_process_bytes (p_bytes, key_len, &ctx); + + /* Add key or last result. */ + if ((cnt & 1) != 0) + sha256_process_bytes (alt_result, 32, &ctx); + else + sha256_process_bytes (p_bytes, key_len, &ctx); + + /* Create intermediate result. */ + sha256_finish_ctx (&ctx, alt_result); + } + + /* Now we can construct the result string. It consists of three + parts. */ + cp = stpncpy (buffer, sha256_salt_prefix, MAX (0, buflen)); + buflen -= sizeof (sha256_salt_prefix) - 1; + + if (rounds_custom) + { + char sbuf[64]; + grub_sprintf (sbuf, "%s%llu$", sha256_rounds_prefix, + (unsigned long long)rounds); + grub_size_t n = strlen (sbuf); + memcpy (cp, sbuf, MIN (MAX (0, buflen), n)); + cp += n; + buflen -= n; + } + + cp = stpncpy (cp, salt, MIN ((grub_size_t) MAX (0, buflen), salt_len)); + buflen -= MIN ((grub_size_t) MAX (0, buflen), salt_len); + + if (buflen > 0) + { + *cp++ = '$'; + --buflen; + } + +#define b64_from_24bit(B2, B1, B0, N) \ + do { \ + unsigned int w = ((B2) << 16) | ((B1) << 8) | (B0); \ + int n = (N); \ + while (n-- > 0 && buflen > 0) \ + { \ + *cp++ = b64t[w & 0x3f]; \ + --buflen; \ + w >>= 6; \ + } \ + } while (0) + + b64_from_24bit (alt_result[0], alt_result[10], alt_result[20], 4); + b64_from_24bit (alt_result[21], alt_result[1], alt_result[11], 4); + b64_from_24bit (alt_result[12], alt_result[22], alt_result[2], 4); + b64_from_24bit (alt_result[3], alt_result[13], alt_result[23], 4); + b64_from_24bit (alt_result[24], alt_result[4], alt_result[14], 4); + b64_from_24bit (alt_result[15], alt_result[25], alt_result[5], 4); + b64_from_24bit (alt_result[6], alt_result[16], alt_result[26], 4); + b64_from_24bit (alt_result[27], alt_result[7], alt_result[17], 4); + b64_from_24bit (alt_result[18], alt_result[28], alt_result[8], 4); + b64_from_24bit (alt_result[9], alt_result[19], alt_result[29], 4); + b64_from_24bit (0, alt_result[31], alt_result[30], 3); + if (buflen <= 0) + buffer = NULL; + else + *cp = '\0'; /* Terminate the string. */ + + /* Clear the buffer for the intermediate result so that people + attaching to processes or reading core dumps cannot get any + information. We do it in this way to clear correct_words[] + inside the SHA256 implementation as well. */ + sha256_init_ctx (&ctx); + sha256_finish_ctx (&ctx, alt_result); + memset (temp_result, '\0', sizeof (temp_result)); + memset (p_bytes, '\0', key_len); + memset (s_bytes, '\0', salt_len); + memset (&ctx, '\0', sizeof (ctx)); + memset (&alt_ctx, '\0', sizeof (alt_ctx)); + if (copied_key != NULL) + memset (copied_key, '\0', key_len); + if (copied_salt != NULL) + memset (copied_salt, '\0', salt_len); + + return buffer; +} + + +/* This entry point is equivalent to the `crypt' function in Unix + libcs. */ +char * +sha256_crypt (const char *key, const char *salt) +{ + static char buffer[sizeof (sha256_salt_prefix) - 1 + + sizeof (sha256_rounds_prefix) + 9 + 1 + + 256 + 1 + 43 + 1]; /* 256 bytes for salt */ + int needed = (sizeof (sha256_salt_prefix) - 1 + + sizeof (sha256_rounds_prefix) + 9 + 1 + + strlen (salt) + 1 + 43 + 1); + + if (sizeof (buffer) < needed) + return NULL; + + return sha256_crypt_r (key, salt, buffer, sizeof (buffer)); +} + + +#ifdef TEST +static const struct +{ + const char *input; + const char result[32]; +} tests[] = + { + /* Test vectors from FIPS 180-2: appendix B.1. */ + { "abc", + "\xba\x78\x16\xbf\x8f\x01\xcf\xea\x41\x41\x40\xde\x5d\xae\x22\x23" + "\xb0\x03\x61\xa3\x96\x17\x7a\x9c\xb4\x10\xff\x61\xf2\x00\x15\xad" }, + /* Test vectors from FIPS 180-2: appendix B.2. */ + { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", + "\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39" + "\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1" }, + /* Test vectors from the NESSIE project. */ + { "", + "\xe3\xb0\xc4\x42\x98\xfc\x1c\x14\x9a\xfb\xf4\xc8\x99\x6f\xb9\x24" + "\x27\xae\x41\xe4\x64\x9b\x93\x4c\xa4\x95\x99\x1b\x78\x52\xb8\x55" }, + { "a", + "\xca\x97\x81\x12\xca\x1b\xbd\xca\xfa\xc2\x31\xb3\x9a\x23\xdc\x4d" + "\xa7\x86\xef\xf8\x14\x7c\x4e\x72\xb9\x80\x77\x85\xaf\xee\x48\xbb" }, + { "message digest", + "\xf7\x84\x6f\x55\xcf\x23\xe1\x4e\xeb\xea\xb5\xb4\xe1\x55\x0c\xad" + "\x5b\x50\x9e\x33\x48\xfb\xc4\xef\xa3\xa1\x41\x3d\x39\x3c\xb6\x50" }, + { "abcdefghijklmnopqrstuvwxyz", + "\x71\xc4\x80\xdf\x93\xd6\xae\x2f\x1e\xfa\xd1\x44\x7c\x66\xc9\x52" + "\x5e\x31\x62\x18\xcf\x51\xfc\x8d\x9e\xd8\x32\xf2\xda\xf1\x8b\x73" }, + { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", + "\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39" + "\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1" }, + { "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789", + "\xdb\x4b\xfc\xbd\x4d\xa0\xcd\x85\xa6\x0c\x3c\x37\xd3\xfb\xd8\x80" + "\x5c\x77\xf1\x5f\xc6\xb1\xfd\xfe\x61\x4e\xe0\xa7\xc8\xfd\xb4\xc0" }, + { "123456789012345678901234567890123456789012345678901234567890" + "12345678901234567890", + "\xf3\x71\xbc\x4a\x31\x1f\x2b\x00\x9e\xef\x95\x2d\xd8\x3c\xa8\x0e" + "\x2b\x60\x02\x6c\x8e\x93\x55\x92\xd0\xf9\xc3\x08\x45\x3c\x81\x3e" } + }; +#define ntests (sizeof (tests) / sizeof (tests[0])) + + +static const struct +{ + const char *salt; + const char *input; + const char *expected; +} tests2[] = +{ + { "$5$saltstring", "Hello world!", + "$5$saltstring$5B8vYYiY.CVt1RlTTf8KbXBH3hsxY/GNooZaBBGWEc5" }, + { "$5$rounds=10000$saltstringsaltstring", "Hello world!", + "$5$rounds=10000$saltstringsaltst$3xv.VbSHBb41AL9AvLeujZkZRBAwqFMz2." + "opqey6IcA" }, + { "$5$rounds=5000$toolongsaltstring", "This is just a test", + "$5$rounds=5000$toolongsaltstrin$Un/5jzAHMgOGZ5.mWJpuVolil07guHPvOW8" + "mGRcvxa5" }, + { "$5$rounds=1400$anotherlongsaltstring", + "a very much longer text to encrypt. This one even stretches over more" + "than one line.", + "$5$rounds=1400$anotherlongsalts$Rx.j8H.h8HjEDGomFU8bDkXm3XIUnzyxf12" + "oP84Bnq1" }, + { "$5$rounds=77777$short", + "we have a short salt string but not a short password", + "$5$rounds=77777$short$JiO1O3ZpDAxGJeaDIuqCoEFysAe1mZNJRs3pw0KQRd/" }, + { "$5$rounds=123456$asaltof16chars..", "a short string", + "$5$rounds=123456$asaltof16chars..$gP3VQ/6X7UUEW3HkBn2w1/Ptq2jxPyzV/" + "cZKmF/wJvD" }, + { "$5$rounds=10$roundstoolow", "the minimum number is still observed", + "$5$rounds=1000$roundstoolow$yfvwcWrQ8l/K0DAWyuPMDNHpIVlTQebY9l/gL97" + "2bIC" }, +}; +#define ntests2 (sizeof (tests2) / sizeof (tests2[0])) + + +int +sha256_test (void) +{ + struct sha256_ctx ctx; + char sum[32]; + int result = 0; + int cnt, i; + + for (cnt = 0; cnt < (int) ntests; ++cnt) + { + sha256_init_ctx (&ctx); + sha256_process_bytes (tests[cnt].input, strlen (tests[cnt].input), &ctx); + sha256_finish_ctx (&ctx, sum); + if (memcmp (tests[cnt].result, sum, 32) != 0) + { + printf ("test %d run %d failed\n", cnt, 1); + result = 1; + } + + sha256_init_ctx (&ctx); + for (i = 0; tests[cnt].input[i] != '\0'; ++i) + sha256_process_bytes (&tests[cnt].input[i], 1, &ctx); + sha256_finish_ctx (&ctx, sum); + if (memcmp (tests[cnt].result, sum, 32) != 0) + { + printf ("test %d run %d failed\n", cnt, 2); + result = 1; + } + } + + /* Test vector from FIPS 180-2: appendix B.3. */ + char buf[1000]; + memset (buf, 'a', sizeof (buf)); + sha256_init_ctx (&ctx); + for (i = 0; i < 1000; ++i) + sha256_process_bytes (buf, sizeof (buf), &ctx); + sha256_finish_ctx (&ctx, sum); + static const char expected[32] = + "\xcd\xc7\x6e\x5c\x99\x14\xfb\x92\x81\xa1\xc7\xe2\x84\xd7\x3e\x67" + "\xf1\x80\x9a\x48\xa4\x97\x20\x0e\x04\x6d\x39\xcc\xc7\x11\x2c\xd0"; + if (memcmp (expected, sum, 32) != 0) + { + printf ("test %d failed\n", cnt); + result = 1; + } + + for (cnt = 0; cnt < ntests2; ++cnt) + { + char *cp = sha256_crypt (tests2[cnt].input, tests2[cnt].salt); + + if (strcmp (cp, tests2[cnt].expected) != 0) + { + printf ("test %d: expected \"%s\", got \"%s\"\n", + cnt, tests2[cnt].expected, cp); + result = 1; + } + } + + if (result == 0) + printf ("all tests OK\n"); + + return result; +} +#endif --- /dev/null +++ b/stage2/sha512crypt.c @@ -0,0 +1,793 @@ +/* SHA512-based Unix crypt implementation. + Released into the Public Domain by Ulrich Drepper <drepper@redhat.com>. + Adapted for grub by Miloslav Trmac <mitr@redhat.com>. */ + +#include <shared.h> + +typedef unsigned long long uint64_t; +typedef unsigned long grub_size_t; +typedef unsigned int uintptr_t; +#define alloca(SIZE) (__builtin_alloca (SIZE)) +#define UINT64_C(X) X ## ULL +#define MIN(a, b) ((a) < (b) ? (a) : (b)) +#define MAX(a, b) ((a) > (b) ? (a) : (b)) + +/* Structure to save state of computation between the single steps. */ +struct sha512_ctx +{ + uint64_t H[8]; + + uint64_t total[2]; + uint64_t buflen; + char buffer[256]; /* NB: always correctly aligned for uint64_t. */ +}; + + +#if 1 /* __BYTE_ORDER == __LITTLE_ENDIAN */ +# define SWAP(n) \ + (((n) << 56) \ + | (((n) & 0xff00) << 40) \ + | (((n) & 0xff0000) << 24) \ + | (((n) & 0xff000000) << 8) \ + | (((n) >> 8) & 0xff000000) \ + | (((n) >> 24) & 0xff0000) \ + | (((n) >> 40) & 0xff00) \ + | ((n) >> 56)) +#else +# define SWAP(n) (n) +#endif + + +/* This array contains the bytes used to pad the buffer to the next + 64-byte boundary. (FIPS 180-2:5.1.2) */ +static const unsigned char fillbuf[128] = { 0x80, 0 /* , 0, 0, ... */ }; + + +/* Constants for SHA512 from FIPS 180-2:4.2.3. */ +static const uint64_t K[80] = + { + UINT64_C (0x428a2f98d728ae22), UINT64_C (0x7137449123ef65cd), + UINT64_C (0xb5c0fbcfec4d3b2f), UINT64_C (0xe9b5dba58189dbbc), + UINT64_C (0x3956c25bf348b538), UINT64_C (0x59f111f1b605d019), + UINT64_C (0x923f82a4af194f9b), UINT64_C (0xab1c5ed5da6d8118), + UINT64_C (0xd807aa98a3030242), UINT64_C (0x12835b0145706fbe), + UINT64_C (0x243185be4ee4b28c), UINT64_C (0x550c7dc3d5ffb4e2), + UINT64_C (0x72be5d74f27b896f), UINT64_C (0x80deb1fe3b1696b1), + UINT64_C (0x9bdc06a725c71235), UINT64_C (0xc19bf174cf692694), + UINT64_C (0xe49b69c19ef14ad2), UINT64_C (0xefbe4786384f25e3), + UINT64_C (0x0fc19dc68b8cd5b5), UINT64_C (0x240ca1cc77ac9c65), + UINT64_C (0x2de92c6f592b0275), UINT64_C (0x4a7484aa6ea6e483), + UINT64_C (0x5cb0a9dcbd41fbd4), UINT64_C (0x76f988da831153b5), + UINT64_C (0x983e5152ee66dfab), UINT64_C (0xa831c66d2db43210), + UINT64_C (0xb00327c898fb213f), UINT64_C (0xbf597fc7beef0ee4), + UINT64_C (0xc6e00bf33da88fc2), UINT64_C (0xd5a79147930aa725), + UINT64_C (0x06ca6351e003826f), UINT64_C (0x142929670a0e6e70), + UINT64_C (0x27b70a8546d22ffc), UINT64_C (0x2e1b21385c26c926), + UINT64_C (0x4d2c6dfc5ac42aed), UINT64_C (0x53380d139d95b3df), + UINT64_C (0x650a73548baf63de), UINT64_C (0x766a0abb3c77b2a8), + UINT64_C (0x81c2c92e47edaee6), UINT64_C (0x92722c851482353b), + UINT64_C (0xa2bfe8a14cf10364), UINT64_C (0xa81a664bbc423001), + UINT64_C (0xc24b8b70d0f89791), UINT64_C (0xc76c51a30654be30), + UINT64_C (0xd192e819d6ef5218), UINT64_C (0xd69906245565a910), + UINT64_C (0xf40e35855771202a), UINT64_C (0x106aa07032bbd1b8), + UINT64_C (0x19a4c116b8d2d0c8), UINT64_C (0x1e376c085141ab53), + UINT64_C (0x2748774cdf8eeb99), UINT64_C (0x34b0bcb5e19b48a8), + UINT64_C (0x391c0cb3c5c95a63), UINT64_C (0x4ed8aa4ae3418acb), + UINT64_C (0x5b9cca4f7763e373), UINT64_C (0x682e6ff3d6b2b8a3), + UINT64_C (0x748f82ee5defb2fc), UINT64_C (0x78a5636f43172f60), + UINT64_C (0x84c87814a1f0ab72), UINT64_C (0x8cc702081a6439ec), + UINT64_C (0x90befffa23631e28), UINT64_C (0xa4506cebde82bde9), + UINT64_C (0xbef9a3f7b2c67915), UINT64_C (0xc67178f2e372532b), + UINT64_C (0xca273eceea26619c), UINT64_C (0xd186b8c721c0c207), + UINT64_C (0xeada7dd6cde0eb1e), UINT64_C (0xf57d4f7fee6ed178), + UINT64_C (0x06f067aa72176fba), UINT64_C (0x0a637dc5a2c898a6), + UINT64_C (0x113f9804bef90dae), UINT64_C (0x1b710b35131c471b), + UINT64_C (0x28db77f523047d84), UINT64_C (0x32caab7b40c72493), + UINT64_C (0x3c9ebe0a15c9bebc), UINT64_C (0x431d67c49c100d4c), + UINT64_C (0x4cc5d4becb3e42b6), UINT64_C (0x597f299cfc657e2a), + UINT64_C (0x5fcb6fab3ad6faec), UINT64_C (0x6c44198c4a475817) + }; + + +/* Process LEN bytes of BUFFER, accumulating context into CTX. + It is assumed that LEN % 128 == 0. */ +static void +sha512_process_block (const void *buffer, grub_size_t len, struct sha512_ctx *ctx) +{ + const uint64_t *words = buffer; + grub_size_t nwords = len / sizeof (uint64_t); + uint64_t a = ctx->H[0]; + uint64_t b = ctx->H[1]; + uint64_t c = ctx->H[2]; + uint64_t d = ctx->H[3]; + uint64_t e = ctx->H[4]; + uint64_t f = ctx->H[5]; + uint64_t g = ctx->H[6]; + uint64_t h = ctx->H[7]; + + /* First increment the byte count. FIPS 180-2 specifies the possible + length of the file up to 2^128 bits. Here we only compute the + number of bytes. Do a double word increment. */ + ctx->total[0] += len; + if (ctx->total[0] < len) + ++ctx->total[1]; + + /* Process all bytes in the buffer with 128 bytes in each round of + the loop. */ + while (nwords > 0) + { + uint64_t W[80]; + uint64_t a_save = a; + uint64_t b_save = b; + uint64_t c_save = c; + uint64_t d_save = d; + uint64_t e_save = e; + uint64_t f_save = f; + uint64_t g_save = g; + uint64_t h_save = h; + unsigned int t; + + /* Operators defined in FIPS 180-2:4.1.2. */ +#define Ch(x, y, z) ((x & y) ^ (~x & z)) +#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z)) +#define S0(x) (CYCLIC (x, 28) ^ CYCLIC (x, 34) ^ CYCLIC (x, 39)) +#define S1(x) (CYCLIC (x, 14) ^ CYCLIC (x, 18) ^ CYCLIC (x, 41)) +#define R0(x) (CYCLIC (x, 1) ^ CYCLIC (x, 8) ^ (x >> 7)) +#define R1(x) (CYCLIC (x, 19) ^ CYCLIC (x, 61) ^ (x >> 6)) + + /* It is unfortunate that C does not provide an operator for + cyclic rotation. Hope the C compiler is smart enough. */ +#define CYCLIC(w, s) ((w >> s) | (w << (64 - s))) + + /* Compute the message schedule according to FIPS 180-2:6.3.2 step 2. */ + for (t = 0; t < 16; ++t) + { + W[t] = SWAP (*words); + ++words; + } + for (t = 16; t < 80; ++t) + W[t] = R1 (W[t - 2]) + W[t - 7] + R0 (W[t - 15]) + W[t - 16]; + + /* The actual computation according to FIPS 180-2:6.3.2 step 3. */ + for (t = 0; t < 80; ++t) + { + uint64_t T1 = h + S1 (e) + Ch (e, f, g) + K[t] + W[t]; + uint64_t T2 = S0 (a) + Maj (a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + } + + /* Add the starting values of the context according to FIPS 180-2:6.3.2 + step 4. */ + a += a_save; + b += b_save; + c += c_save; + d += d_save; + e += e_save; + f += f_save; + g += g_save; + h += h_save; + + /* Prepare for the next round. */ + nwords -= 16; + } + + /* Put checksum in context given as argument. */ + ctx->H[0] = a; + ctx->H[1] = b; + ctx->H[2] = c; + ctx->H[3] = d; + ctx->H[4] = e; + ctx->H[5] = f; + ctx->H[6] = g; + ctx->H[7] = h; +} + + +/* Initialize structure containing state of computation. + (FIPS 180-2:5.3.3) */ +static void +sha512_init_ctx (struct sha512_ctx *ctx) +{ + ctx->H[0] = UINT64_C (0x6a09e667f3bcc908); + ctx->H[1] = UINT64_C (0xbb67ae8584caa73b); + ctx->H[2] = UINT64_C (0x3c6ef372fe94f82b); + ctx->H[3] = UINT64_C (0xa54ff53a5f1d36f1); + ctx->H[4] = UINT64_C (0x510e527fade682d1); + ctx->H[5] = UINT64_C (0x9b05688c2b3e6c1f); + ctx->H[6] = UINT64_C (0x1f83d9abfb41bd6b); + ctx->H[7] = UINT64_C (0x5be0cd19137e2179); + + ctx->total[0] = ctx->total[1] = 0; + ctx->buflen = 0; +} + + +/* Process the remaining bytes in the internal buffer and the usual + prolog according to the standard and write the result to RESBUF. + + IMPORTANT: On some systems it is required that RESBUF is correctly + aligned for a 32 bits value. */ +static void * +sha512_finish_ctx (struct sha512_ctx *ctx, void *resbuf) +{ + /* Take yet unprocessed bytes into account. */ + uint64_t bytes = ctx->buflen; + grub_size_t pad; + unsigned int i; + + /* Now count remaining bytes. */ + ctx->total[0] += bytes; + if (ctx->total[0] < bytes) + ++ctx->total[1]; + + pad = bytes >= 112 ? 128 + 112 - bytes : 112 - bytes; + memcpy (&ctx->buffer[bytes], fillbuf, pad); + + /* Put the 128-bit file length in *bits* at the end of the buffer. */ + *(uint64_t *) &ctx->buffer[bytes + pad + 8] = SWAP (ctx->total[0] << 3); + *(uint64_t *) &ctx->buffer[bytes + pad] = SWAP ((ctx->total[1] << 3) | + (ctx->total[0] >> 61)); + + /* Process last bytes. */ + sha512_process_block (ctx->buffer, bytes + pad + 16, ctx); + + /* Put result from CTX in first 64 bytes following RESBUF. */ + for (i = 0; i < 8; ++i) + ((uint64_t *) resbuf)[i] = SWAP (ctx->H[i]); + + return resbuf; +} + + +static void +sha512_process_bytes (const void *buffer, grub_size_t len, struct sha512_ctx *ctx) +{ + /* When we already have some bits in our internal buffer concatenate + both inputs first. */ + if (ctx->buflen != 0) + { + grub_size_t left_over = ctx->buflen; + grub_size_t add = 256 - left_over > len ? len : 256 - left_over; + + memcpy (&ctx->buffer[left_over], buffer, add); + ctx->buflen += add; + + if (ctx->buflen > 128) + { + sha512_process_block (ctx->buffer, ctx->buflen & ~127, ctx); + + ctx->buflen &= 127; + /* The regions in the following copy operation cannot overlap. */ + memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~127], + ctx->buflen); + } + + buffer = (const char *) buffer + add; + len -= add; + } + + /* Process available complete blocks. */ + if (len >= 128) + { +/* To check alignment gcc has an appropriate operator. Other + compilers don't. */ +# if __GNUC__ >= 2 +# define UNALIGNED_P(p) (((uintptr_t) p) % __alignof__ (uint64_t) != 0) +# else +# define UNALIGNED_P(p) (((uintptr_t) p) % sizeof (uint64_t) != 0) +# endif + if (UNALIGNED_P (buffer)) + while (len > 128) + { + sha512_process_block (memcpy (ctx->buffer, buffer, 128), 128, + ctx); + buffer = (const char *) buffer + 128; + len -= 128; + } + else + { + sha512_process_block (buffer, len & ~127, ctx); + buffer = (const char *) buffer + (len & ~127); + len &= 127; + } + } + + /* Move remaining bytes into internal buffer. */ + if (len > 0) + { + grub_size_t left_over = ctx->buflen; + + memcpy (&ctx->buffer[left_over], buffer, len); + left_over += len; + if (left_over >= 128) + { + sha512_process_block (ctx->buffer, 128, ctx); + left_over -= 128; + memcpy (ctx->buffer, &ctx->buffer[128], left_over); + } + ctx->buflen = left_over; + } +} + + +/* Define our magic string to mark salt for SHA512 "encryption" + replacement. */ +static const char sha512_salt_prefix[] = "$6$"; + +/* Prefix for optional rounds specification. */ +static const char sha512_rounds_prefix[] = "rounds="; + +/* Maximum salt string length. */ +#define SALT_LEN_MAX 16 +/* Default number of rounds if not explicitly specified. */ +#define ROUNDS_DEFAULT 5000 +/* Minimum number of rounds. */ +#define ROUNDS_MIN 1000 +/* Maximum number of rounds. */ +#define ROUNDS_MAX 999999999 + +/* Table with characters for base64 transformation. */ +static const char b64t[64] = +"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; + + +static char * +sha512_crypt_r (const char *key, const char *salt, char *buffer, int buflen) +{ + unsigned char alt_result[64] + __attribute__ ((__aligned__ (__alignof__ (uint64_t)))); + unsigned char temp_result[64] + __attribute__ ((__aligned__ (__alignof__ (uint64_t)))); + struct sha512_ctx ctx; + struct sha512_ctx alt_ctx; + grub_size_t salt_len; + grub_size_t key_len; + grub_size_t cnt; + char *cp; + char *copied_key = NULL; + char *copied_salt = NULL; + char *p_bytes; + char *s_bytes; + /* Default number of rounds. */ + grub_size_t rounds = ROUNDS_DEFAULT; + int rounds_custom = 0; + + /* Find beginning of salt string. The prefix should normally always + be present. Just in case it is not. */ + if (grub_memcmp (sha512_salt_prefix, salt, + sizeof (sha512_salt_prefix) - 1) == 0) + /* Skip salt prefix. */ + salt += sizeof (sha512_salt_prefix) - 1; + + if (grub_memcmp (salt, sha512_rounds_prefix, + sizeof (sha512_rounds_prefix) - 1) == 0) + { + const char *num = salt + sizeof (sha512_rounds_prefix) - 1; + char *endp = (char *)num; + int srounds = 0; + if (*endp == '0' && tolower (endp[1]) == 'x') + /* This would be interpreted as hexadecimal by safe_parse_maxint(). */ + endp++; + else + /* On error, endp and srounds is not changed. */ + safe_parse_maxint(&endp, &srounds); + if (*endp == '$') + { + salt = endp + 1; + rounds = MAX (ROUNDS_MIN, MIN (srounds, ROUNDS_MAX)); + rounds_custom = 1; + } + } + + salt_len = MIN (strstr (salt, "$")-salt, SALT_LEN_MAX); + key_len = strlen (key); + + if ((key - (char *) 0) % __alignof__ (uint64_t) != 0) + { + char *tmp = (char *) alloca (key_len + __alignof__ (uint64_t)); + key = copied_key = + memcpy (tmp + __alignof__ (uint64_t) + - (tmp - (char *) 0) % __alignof__ (uint64_t), + key, key_len); + } + + if ((salt - (char *) 0) % __alignof__ (uint64_t) != 0) + { + char *tmp = (char *) alloca (salt_len + __alignof__ (uint64_t)); + salt = copied_salt = + memcpy (tmp + __alignof__ (uint64_t) + - (tmp - (char *) 0) % __alignof__ (uint64_t), + salt, salt_len); + } + + /* Prepare for the real work. */ + sha512_init_ctx (&ctx); + + /* Add the key string. */ + sha512_process_bytes (key, key_len, &ctx); + + /* The last part is the salt string. This must be at most 16 + characters and it ends at the first `$' character (for + compatibility with existing implementations). */ + sha512_process_bytes (salt, salt_len, &ctx); + + + /* Compute alternate SHA512 sum with input KEY, SALT, and KEY. The + final result will be added to the first context. */ + sha512_init_ctx (&alt_ctx); + + /* Add key. */ + sha512_process_bytes (key, key_len, &alt_ctx); + + /* Add salt. */ + sha512_process_bytes (salt, salt_len, &alt_ctx); + + /* Add key again. */ + sha512_process_bytes (key, key_len, &alt_ctx); + + /* Now get result of this (64 bytes) and add it to the other + context. */ + sha512_finish_ctx (&alt_ctx, alt_result); + + /* Add for any character in the key one byte of the alternate sum. */ + for (cnt = key_len; cnt > 64; cnt -= 64) + sha512_process_bytes (alt_result, 64, &ctx); + sha512_process_bytes (alt_result, cnt, &ctx); + + /* Take the binary representation of the length of the key and for every + 1 add the alternate sum, for every 0 the key. */ + for (cnt = key_len; cnt > 0; cnt >>= 1) + if ((cnt & 1) != 0) + sha512_process_bytes (alt_result, 64, &ctx); + else + sha512_process_bytes (key, key_len, &ctx); + + /* Create intermediate result. */ + sha512_finish_ctx (&ctx, alt_result); + + /* Start computation of P byte sequence. */ + sha512_init_ctx (&alt_ctx); + + /* For every character in the password add the entire password. */ + for (cnt = 0; cnt < key_len; ++cnt) + sha512_process_bytes (key, key_len, &alt_ctx); + + /* Finish the digest. */ + sha512_finish_ctx (&alt_ctx, temp_result); + + /* Create byte sequence P. */ + cp = p_bytes = alloca (key_len); + for (cnt = key_len; cnt >= 64; cnt -= 64) + { + memcpy (cp, temp_result, 64); + cp += 64; + } + memcpy (cp, temp_result, cnt); + + /* Start computation of S byte sequence. */ + sha512_init_ctx (&alt_ctx); + + /* For every character in the password add the entire password. */ + for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt) + sha512_process_bytes (salt, salt_len, &alt_ctx); + + /* Finish the digest. */ + sha512_finish_ctx (&alt_ctx, temp_result); + + /* Create byte sequence S. */ + cp = s_bytes = alloca (salt_len); + for (cnt = salt_len; cnt >= 64; cnt -= 64) + { + memcpy (cp, temp_result, 64); + cp += 64; + } + memcpy (cp, temp_result, cnt); + + /* Repeatedly run the collected hash value through SHA512 to burn + CPU cycles. */ + for (cnt = 0; cnt < rounds; ++cnt) + { + /* New context. */ + sha512_init_ctx (&ctx); + + /* Add key or last result. */ + if ((cnt & 1) != 0) + sha512_process_bytes (p_bytes, key_len, &ctx); + else + sha512_process_bytes (alt_result, 64, &ctx); + + /* Add salt for numbers not divisible by 3. */ + if (cnt % 3 != 0) + sha512_process_bytes (s_bytes, salt_len, &ctx); + + /* Add key for numbers not divisible by 7. */ + if (cnt % 7 != 0) + sha512_process_bytes (p_bytes, key_len, &ctx); + + /* Add key or last result. */ + if ((cnt & 1) != 0) + sha512_process_bytes (alt_result, 64, &ctx); + else + sha512_process_bytes (p_bytes, key_len, &ctx); + + /* Create intermediate result. */ + sha512_finish_ctx (&ctx, alt_result); + } + + /* Now we can construct the result string. It consists of three + parts. */ + cp = stpncpy (buffer, sha512_salt_prefix, MAX (0, buflen)); + buflen -= sizeof (sha512_salt_prefix) - 1; + + if (rounds_custom) + { + char sbuf[64]; + grub_sprintf (sbuf, "%s%llu$", sha512_rounds_prefix, + (unsigned long long)rounds); + grub_size_t n = strlen (sbuf); + memcpy (cp, sbuf, MIN (MAX (0, buflen), n)); + cp += n; + buflen -= n; + } + + cp = stpncpy (cp, salt, MIN ((grub_size_t) MAX (0, buflen), salt_len)); + buflen -= MIN ((grub_size_t) MAX (0, buflen), salt_len); + + if (buflen > 0) + { + *cp++ = '$'; + --buflen; + } + +#define b64_from_24bit(B2, B1, B0, N) \ + do { \ + unsigned int w = ((B2) << 16) | ((B1) << 8) | (B0); \ + int n = (N); \ + while (n-- > 0 && buflen > 0) \ + { \ + *cp++ = b64t[w & 0x3f]; \ + --buflen; \ + w >>= 6; \ + } \ + } while (0) + + b64_from_24bit (alt_result[0], alt_result[21], alt_result[42], 4); + b64_from_24bit (alt_result[22], alt_result[43], alt_result[1], 4); + b64_from_24bit (alt_result[44], alt_result[2], alt_result[23], 4); + b64_from_24bit (alt_result[3], alt_result[24], alt_result[45], 4); + b64_from_24bit (alt_result[25], alt_result[46], alt_result[4], 4); + b64_from_24bit (alt_result[47], alt_result[5], alt_result[26], 4); + b64_from_24bit (alt_result[6], alt_result[27], alt_result[48], 4); + b64_from_24bit (alt_result[28], alt_result[49], alt_result[7], 4); + b64_from_24bit (alt_result[50], alt_result[8], alt_result[29], 4); + b64_from_24bit (alt_result[9], alt_result[30], alt_result[51], 4); + b64_from_24bit (alt_result[31], alt_result[52], alt_result[10], 4); + b64_from_24bit (alt_result[53], alt_result[11], alt_result[32], 4); + b64_from_24bit (alt_result[12], alt_result[33], alt_result[54], 4); + b64_from_24bit (alt_result[34], alt_result[55], alt_result[13], 4); + b64_from_24bit (alt_result[56], alt_result[14], alt_result[35], 4); + b64_from_24bit (alt_result[15], alt_result[36], alt_result[57], 4); + b64_from_24bit (alt_result[37], alt_result[58], alt_result[16], 4); + b64_from_24bit (alt_result[59], alt_result[17], alt_result[38], 4); + b64_from_24bit (alt_result[18], alt_result[39], alt_result[60], 4); + b64_from_24bit (alt_result[40], alt_result[61], alt_result[19], 4); + b64_from_24bit (alt_result[62], alt_result[20], alt_result[41], 4); + b64_from_24bit (0, 0, alt_result[63], 2); + + if (buflen <= 0) + buffer = NULL; + else + *cp = '\0'; /* Terminate the string. */ + + /* Clear the buffer for the intermediate result so that people + attaching to processes or reading core dumps cannot get any + information. We do it in this way to clear correct_words[] + inside the SHA512 implementation as well. */ + sha512_init_ctx (&ctx); + sha512_finish_ctx (&ctx, alt_result); + memset (temp_result, '\0', sizeof (temp_result)); + memset (p_bytes, '\0', key_len); + memset (s_bytes, '\0', salt_len); + memset (&ctx, '\0', sizeof (ctx)); + memset (&alt_ctx, '\0', sizeof (alt_ctx)); + if (copied_key != NULL) + memset (copied_key, '\0', key_len); + if (copied_salt != NULL) + memset (copied_salt, '\0', salt_len); + + return buffer; +} + + +/* This entry point is equivalent to the `crypt' function in Unix + libcs. */ +char * +sha512_crypt (const char *key, const char *salt) +{ + /* We don't want to have an arbitrary limit in the size of the + password. We can compute an upper bound for the size of the + result in advance and so we can prepare the buffer we pass to + `sha512_crypt_r'. */ + static char buffer[sizeof (sha512_salt_prefix) - 1 + + sizeof (sha512_rounds_prefix) + 9 + 1 + + 256 + 1 + 86 + 1]; /* 256 bytes for salt */ + int needed = (sizeof (sha512_salt_prefix) - 1 + + sizeof (sha512_rounds_prefix) + 9 + 1 + + strlen (salt) + 1 + 86 + 1); + + if (sizeof (buffer) < needed) + return NULL; + + return sha512_crypt_r (key, salt, buffer, sizeof (buffer)); +} + + +#ifdef TEST +static const struct +{ + const char *input; + const char result[64]; +} tests[] = + { + /* Test vectors from FIPS 180-2: appendix C.1. */ + { "abc", + "\xdd\xaf\x35\xa1\x93\x61\x7a\xba\xcc\x41\x73\x49\xae\x20\x41\x31" + "\x12\xe6\xfa\x4e\x89\xa9\x7e\xa2\x0a\x9e\xee\xe6\x4b\x55\xd3\x9a" + "\x21\x92\x99\x2a\x27\x4f\xc1\xa8\x36\xba\x3c\x23\xa3\xfe\xeb\xbd" + "\x45\x4d\x44\x23\x64\x3c\xe8\x0e\x2a\x9a\xc9\x4f\xa5\x4c\xa4\x9f" }, + /* Test vectors from FIPS 180-2: appendix C.2. */ + { "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn" + "hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu", + "\x8e\x95\x9b\x75\xda\xe3\x13\xda\x8c\xf4\xf7\x28\x14\xfc\x14\x3f" + "\x8f\x77\x79\xc6\xeb\x9f\x7f\xa1\x72\x99\xae\xad\xb6\x88\x90\x18" + "\x50\x1d\x28\x9e\x49\x00\xf7\xe4\x33\x1b\x99\xde\xc4\xb5\x43\x3a" + "\xc7\xd3\x29\xee\xb6\xdd\x26\x54\x5e\x96\xe5\x5b\x87\x4b\xe9\x09" }, + /* Test vectors from the NESSIE project. */ + { "", + "\xcf\x83\xe1\x35\x7e\xef\xb8\xbd\xf1\x54\x28\x50\xd6\x6d\x80\x07" + "\xd6\x20\xe4\x05\x0b\x57\x15\xdc\x83\xf4\xa9\x21\xd3\x6c\xe9\xce" + "\x47\xd0\xd1\x3c\x5d\x85\xf2\xb0\xff\x83\x18\xd2\x87\x7e\xec\x2f" + "\x63\xb9\x31\xbd\x47\x41\x7a\x81\xa5\x38\x32\x7a\xf9\x27\xda\x3e" }, + { "a", + "\x1f\x40\xfc\x92\xda\x24\x16\x94\x75\x09\x79\xee\x6c\xf5\x82\xf2" + "\xd5\xd7\xd2\x8e\x18\x33\x5d\xe0\x5a\xbc\x54\xd0\x56\x0e\x0f\x53" + "\x02\x86\x0c\x65\x2b\xf0\x8d\x56\x02\x52\xaa\x5e\x74\x21\x05\x46" + "\xf3\x69\xfb\xbb\xce\x8c\x12\xcf\xc7\x95\x7b\x26\x52\xfe\x9a\x75" }, + { "message digest", + "\x10\x7d\xbf\x38\x9d\x9e\x9f\x71\xa3\xa9\x5f\x6c\x05\x5b\x92\x51" + "\xbc\x52\x68\xc2\xbe\x16\xd6\xc1\x34\x92\xea\x45\xb0\x19\x9f\x33" + "\x09\xe1\x64\x55\xab\x1e\x96\x11\x8e\x8a\x90\x5d\x55\x97\xb7\x20" + "\x38\xdd\xb3\x72\xa8\x98\x26\x04\x6d\xe6\x66\x87\xbb\x42\x0e\x7c" }, + { "abcdefghijklmnopqrstuvwxyz", + "\x4d\xbf\xf8\x6c\xc2\xca\x1b\xae\x1e\x16\x46\x8a\x05\xcb\x98\x81" + "\xc9\x7f\x17\x53\xbc\xe3\x61\x90\x34\x89\x8f\xaa\x1a\xab\xe4\x29" + "\x95\x5a\x1b\xf8\xec\x48\x3d\x74\x21\xfe\x3c\x16\x46\x61\x3a\x59" + "\xed\x54\x41\xfb\x0f\x32\x13\x89\xf7\x7f\x48\xa8\x79\xc7\xb1\xf1" }, + { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", + "\x20\x4a\x8f\xc6\xdd\xa8\x2f\x0a\x0c\xed\x7b\xeb\x8e\x08\xa4\x16" + "\x57\xc1\x6e\xf4\x68\xb2\x28\xa8\x27\x9b\xe3\x31\xa7\x03\xc3\x35" + "\x96\xfd\x15\xc1\x3b\x1b\x07\xf9\xaa\x1d\x3b\xea\x57\x78\x9c\xa0" + "\x31\xad\x85\xc7\xa7\x1d\xd7\x03\x54\xec\x63\x12\x38\xca\x34\x45" }, + { "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789", + "\x1e\x07\xbe\x23\xc2\x6a\x86\xea\x37\xea\x81\x0c\x8e\xc7\x80\x93" + "\x52\x51\x5a\x97\x0e\x92\x53\xc2\x6f\x53\x6c\xfc\x7a\x99\x96\xc4" + "\x5c\x83\x70\x58\x3e\x0a\x78\xfa\x4a\x90\x04\x1d\x71\xa4\xce\xab" + "\x74\x23\xf1\x9c\x71\xb9\xd5\xa3\xe0\x12\x49\xf0\xbe\xbd\x58\x94" }, + { "123456789012345678901234567890123456789012345678901234567890" + "12345678901234567890", + "\x72\xec\x1e\xf1\x12\x4a\x45\xb0\x47\xe8\xb7\xc7\x5a\x93\x21\x95" + "\x13\x5b\xb6\x1d\xe2\x4e\xc0\xd1\x91\x40\x42\x24\x6e\x0a\xec\x3a" + "\x23\x54\xe0\x93\xd7\x6f\x30\x48\xb4\x56\x76\x43\x46\x90\x0c\xb1" + "\x30\xd2\xa4\xfd\x5d\xd1\x6a\xbb\x5e\x30\xbc\xb8\x50\xde\xe8\x43" } + }; +#define ntests (sizeof (tests) / sizeof (tests[0])) + + +static const struct +{ + const char *salt; + const char *input; + const char *expected; +} tests2[] = +{ + { "$6$saltstring", "Hello world!", + "$6$saltstring$svn8UoSVapNtMuq1ukKS4tPQd8iKwSMHWjl/O817G3uBnIFNjnQJu" + "esI68u4OTLiBFdcbYEdFCoEOfaS35inz1" }, + { "$6$rounds=10000$saltstringsaltstring", "Hello world!", + "$6$rounds=10000$saltstringsaltst$OW1/O6BYHV6BcXZu8QVeXbDWra3Oeqh0sb" + "HbbMCVNSnCM/UrjmM0Dp8vOuZeHBy/YTBmSK6H9qs/y3RnOaw5v." }, + { "$6$rounds=5000$toolongsaltstring", "This is just a test", + "$6$rounds=5000$toolongsaltstrin$lQ8jolhgVRVhY4b5pZKaysCLi0QBxGoNeKQ" + "zQ3glMhwllF7oGDZxUhx1yxdYcz/e1JSbq3y6JMxxl8audkUEm0" }, + { "$6$rounds=1400$anotherlongsaltstring", + "a very much longer text to encrypt. This one even stretches over more" + "than one line.", + "$6$rounds=1400$anotherlongsalts$POfYwTEok97VWcjxIiSOjiykti.o/pQs.wP" + "vMxQ6Fm7I6IoYN3CmLs66x9t0oSwbtEW7o7UmJEiDwGqd8p4ur1" }, + { "$6$rounds=77777$short", + "we have a short salt string but not a short password", + "$6$rounds=77777$short$WuQyW2YR.hBNpjjRhpYD/ifIw05xdfeEyQoMxIXbkvr0g" + "ge1a1x3yRULJ5CCaUeOxFmtlcGZelFl5CxtgfiAc0" }, + { "$6$rounds=123456$asaltof16chars..", "a short string", + "$6$rounds=123456$asaltof16chars..$BtCwjqMJGx5hrJhZywWvt0RLE8uZ4oPwc" + "elCjmw2kSYu.Ec6ycULevoBK25fs2xXgMNrCzIMVcgEJAstJeonj1" }, + { "$6$rounds=10$roundstoolow", "the minimum number is still observed", + "$6$rounds=1000$roundstoolow$kUMsbe306n21p9R.FRkW3IGn.S9NPN0x50YhH1x" + "hLsPuWGsUSklZt58jaTfF4ZEQpyUNGc0dqbpBYYBaHHrsX." }, +}; +#define ntests2 (sizeof (tests2) / sizeof (tests2[0])) + + +int +sha512_test (void) +{ + struct sha512_ctx ctx; + char sum[64]; + int result = 0; + int cnt, i; + + for (cnt = 0; cnt < (int) ntests; ++cnt) + { + sha512_init_ctx (&ctx); + sha512_process_bytes (tests[cnt].input, strlen (tests[cnt].input), &ctx); + sha512_finish_ctx (&ctx, sum); + if (memcmp (tests[cnt].result, sum, 64) != 0) + { + printf ("test %d run %d failed\n", cnt, 1); + result = 1; + } + + sha512_init_ctx (&ctx); + for (i = 0; tests[cnt].input[i] != '\0'; ++i) + sha512_process_bytes (&tests[cnt].input[i], 1, &ctx); + sha512_finish_ctx (&ctx, sum); + if (memcmp (tests[cnt].result, sum, 64) != 0) + { + printf ("test %d run %d failed\n", cnt, 2); + result = 1; + } + } + + /* Test vector from FIPS 180-2: appendix C.3. */ + char buf[1000]; + memset (buf, 'a', sizeof (buf)); + sha512_init_ctx (&ctx); + for (i = 0; i < 1000; ++i) + sha512_process_bytes (buf, sizeof (buf), &ctx); + sha512_finish_ctx (&ctx, sum); + static const char expected[64] = + "\xe7\x18\x48\x3d\x0c\xe7\x69\x64\x4e\x2e\x42\xc7\xbc\x15\xb4\x63" + "\x8e\x1f\x98\xb1\x3b\x20\x44\x28\x56\x32\xa8\x03\xaf\xa9\x73\xeb" + "\xde\x0f\xf2\x44\x87\x7e\xa6\x0a\x4c\xb0\x43\x2c\xe5\x77\xc3\x1b" + "\xeb\x00\x9c\x5c\x2c\x49\xaa\x2e\x4e\xad\xb2\x17\xad\x8c\xc0\x9b"; + if (memcmp (expected, sum, 64) != 0) + { + printf ("test %d failed\n", cnt); + result = 1; + } + + for (cnt = 0; cnt < ntests2; ++cnt) + { + char *cp = sha512_crypt (tests2[cnt].input, tests2[cnt].salt); + + if (strcmp (cp, tests2[cnt].expected) != 0) + { + printf ("test %d: expected \"%s\", got \"%s\"\n", + cnt, tests2[cnt].expected, cp); + result = 1; + } + } + + if (result == 0) + printf ("all tests OK\n"); + + return result; +} +#endif --- a/stage2/shared.h +++ b/stage2/shared.h @@ -373,6 +373,7 @@ extern char *grub_scratch_mem; #define tolower grub_tolower #define strlen grub_strlen #define strcpy grub_strcpy +#define stpncpy grub_stpncpy #endif /* WITHOUT_LIBC_STUBS */ @@ -650,6 +651,7 @@ typedef enum { PASSWORD_PLAIN, PASSWORD_MD5, + PASSWORD_ENCRYPTED, PASSWORD_UNSUPPORTED } password_t; @@ -929,6 +931,7 @@ int grub_memcmp (const char *s1, const c int grub_strcmp (const char *s1, const char *s2); int grub_strlen (const char *str); char *grub_strcpy (char *dest, const char *src); +char *grub_stpncpy (char *dest, const char *src, int n); #ifndef GRUB_UTIL typedef unsigned long grub_jmp_buf[6]; @@ -1039,6 +1042,9 @@ int load_module (char *module, char *arg int load_initrd (char *initrd); int check_password(char *entered, char* expected, password_t type); + +char *sha256_crypt (const char *key, const char *salt); +char *sha512_crypt (const char *key, const char *salt); #endif void init_bios_info (void); --- /dev/null +++ b/util/grub-crypt.in @@ -0,0 +1,80 @@ +#! /usr/bin/python + +'''Generate encrypted passwords for GRUB.''' + +import crypt +import getopt +import getpass +import sys + +def usage(): + '''Output usage message to stderr and exit.''' + print >> sys.stderr, 'Usage: grub-crypt [OPTION]...' + print >> sys.stderr, 'Try `$progname --help\' for more information.' + sys.exit(1) + +def gen_salt(): + '''Generate a random salt.''' + ret = '' + with open('/dev/urandom', 'rb') as urandom: + while True: + byte = urandom.read(1) + if byte in ('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz' + './0123456789'): + ret += byte + if len(ret) == 16: + break + return ret + +def main(): + '''Top level.''' + crypt_type = '$6$' # SHA-256 + try: + opts, args = getopt.getopt(sys.argv[1:], 'hv', + ('help', 'version', 'md5', 'sha-256', + 'sha-512')) + except getopt.GetoptError, err: + print >> sys.stderr, str(err) + usage() + if args: + print >> sys.stderr, 'Unexpected argument `%s\'' % (args[0],) + usage() + for (opt, _) in opts: + if opt in ('-h', '--help'): + print ( +'''Usage: grub-crypt [OPTION]... +Encrypt a password. + + -h, --help Print this message and exit + -v, --version Print the version information and exit + --md5 Use MD5 to encrypt the password + --sha-256 Use SHA-256 to encrypt the password + --sha-512 Use SHA-512 to encrypt the password (default) + +Report bugs to <bug-grub@gnu.org>. +EOF''') + sys.exit(0) + elif opt in ('-v', '--version'): + print 'grub-crypt (GNU GRUB @VERSION@)' + sys.exit(0) + elif opt == '--md5': + crypt_type = '$1$' + elif opt == '--sha-256': + crypt_type = '$5$' + elif opt == '--sha-512': + crypt_type = '$6$' + else: + assert False, 'Unhandled option' + password = getpass.getpass('Password: ') + password2 = getpass.getpass('Retype password: ') + if not password: + print >> sys.stderr, 'Empty password is not permitted.' + sys.exit(1) + if password != password2: + print >> sys.stderr, 'Sorry, passwords do not match.' + sys.exit(1) + salt = crypt_type + gen_salt() + print crypt.crypt(password, salt) + +if __name__ == '__main__': + main() --- a/util/Makefile.am +++ b/util/Makefile.am @@ -1,5 +1,5 @@ bin_PROGRAMS = mbchk -sbin_SCRIPTS = grub-install grub-md5-crypt grub-terminfo \ +sbin_SCRIPTS = grub-install grub-md5-crypt grub-terminfo grub-crypt \ grub-set-default noinst_SCRIPTS = grub-image mkbimage
Locations
Projects
Search
Status Monitor
Help
OpenBuildService.org
Documentation
API Documentation
Code of Conduct
Contact
Support
@OBShq
Terms
openSUSE Build Service is sponsored by
The Open Build Service is an
openSUSE project
.
Sign Up
Log In
Places
Places
All Projects
Status Monitor