Sign Up
Log In
Log In
or
Sign Up
Places
All Projects
Status Monitor
Collapse sidebar
SUSE:SLE-12:Update
libgcrypt.2574
libgcrypt-fips_rsa_keygen.patch
Overview
Repositories
Revisions
Requests
Users
Attributes
Meta
File libgcrypt-fips_rsa_keygen.patch of Package libgcrypt.2574
Index: libgcrypt-1.6.1/cipher/rsa.c =================================================================== --- libgcrypt-1.6.1.orig/cipher/rsa.c 2015-02-16 17:17:27.281576283 +0100 +++ libgcrypt-1.6.1/cipher/rsa.c 2015-02-16 18:21:08.946056697 +0100 @@ -421,6 +421,279 @@ gen_x931_parm_xi (void) } +/**************** + * Generate a key pair with a key of size NBITS. + * USE_E = 0 let Libcgrypt decide what exponent to use. + * = 1 request the use of a "secure" exponent; this is required by some + * specification to be 65537. + * > 2 Use this public exponent. If the given exponent + * is not odd one is internally added to it. + * TESTPARMS: If set, do not generate but test whether the p,q is probably prime + * Returns key with zeroes to not break code calling this function. + * TRANSIENT_KEY: If true, generate the primes using the standard RNG. + * Returns: 2 structures filled with all needed values + */ +static gpg_err_code_t +generate_fips (RSA_secret_key *sk, unsigned int nbits, unsigned long use_e, + gcry_sexp_t testparms, int *swapped) +{ + gcry_mpi_t p, q; /* the two primes */ + gcry_mpi_t d; /* the private key */ + gcry_mpi_t u; + gcry_mpi_t p1, q1; + gcry_mpi_t n; /* the public key */ + gcry_mpi_t e; /* the exponent */ + gcry_mpi_t g; + gcry_mpi_t minp; + gcry_mpi_t diff, mindiff; + gcry_random_level_t random_level; + unsigned int pbits = nbits/2; + unsigned int i; + int pqswitch; + gpg_err_code_t ec = GPG_ERR_NO_PRIME; + + if (nbits < 1024 || (nbits & 0x1FF)) + return GPG_ERR_INV_VALUE; + if (fips_mode() && nbits != 2048 && nbits != 3072) + return GPG_ERR_INV_VALUE; + + random_level = GCRY_VERY_STRONG_RANDOM; + + if (testparms) + { + /* Parameters to derive the key are given. */ + /* Note that we explicitly need to setup the values of tbl + because some compilers (e.g. OpenWatcom, IRIX) don't allow + to initialize a structure with automatic variables. */ + struct { const char *name; gcry_mpi_t *value; } tbl[] = { + { "e" }, + { "p" }, + { "q" }, + { NULL } + }; + int idx; + gcry_sexp_t oneparm; + + tbl[0].value = &e; + tbl[1].value = &p; + tbl[2].value = &q; + + for (idx=0; tbl[idx].name; idx++) + { + oneparm = sexp_find_token (testparms, tbl[idx].name, 0); + if (oneparm) + { + *tbl[idx].value = sexp_nth_mpi (oneparm, 1, + GCRYMPI_FMT_USG); + sexp_release (oneparm); + } + } + for (idx=0; tbl[idx].name; idx++) + if (!*tbl[idx].value) + break; + if (tbl[idx].name) + { + /* At least one parameter is missing. */ + for (idx=0; tbl[idx].name; idx++) + _gcry_mpi_release (*tbl[idx].value); + return GPG_ERR_MISSING_VALUE; + } + } + else + { + if (use_e < 65537) + use_e = 65537; /* This is the smallest value allowed by FIPS */ + + e = mpi_alloc( (32+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB ); + + use_e |= 1; /* make sure this is odd */ + mpi_set_ui (e, use_e); + + p = mpi_snew (pbits); + q = mpi_snew (pbits); + } + + n = mpi_new (nbits); + d = mpi_snew (nbits); + u = mpi_snew (nbits); + + /* prepare approximate minimum p and q */ + minp = mpi_new (pbits); + mpi_set_ui (minp, 0xB504F334); + mpi_lshift (minp, minp, pbits - 32); + + /* prepare minimum p and q difference */ + diff = mpi_new (pbits); + mindiff = mpi_new (pbits - 99); + mpi_set_ui (mindiff, 1); + mpi_lshift (mindiff, mindiff, pbits - 100); + + p1 = mpi_snew (pbits); + q1 = mpi_snew (pbits); + g = mpi_snew (pbits); + +retry: + /* generate p and q */ + for (i = 0; i < 5 * pbits; i++) + { + ploop: + if (!testparms) + { + _gcry_mpi_randomize (p, pbits, random_level); + } + if (mpi_cmp (p, minp) < 0) + { + if (testparms) goto err; + goto ploop; + } + + mpi_sub_ui (p1, p, 1); + if (mpi_gcd (g, p1, e)) + { + if (_gcry_fips186_4_prime_check (p, pbits) != GPG_ERR_NO_ERROR) + { + /* not a prime */ + if (testparms) goto err; + } + else + break; + } + else if (testparms) goto err; + } + if (i >= 5 * pbits) + goto err; + + for (i = 0; i < 5 * pbits; i++) + { + qloop: + if (!testparms) + { + _gcry_mpi_randomize (q, pbits, random_level); + } + if (mpi_cmp (q, minp) < 0) + { + if (testparms) goto err; + goto qloop; + } + if (mpi_cmp (p, q) < 0) + { + pqswitch = 1; + mpi_sub (diff, q, p); + } + else + { + pqswitch = 0; + mpi_sub (diff, p, q); + } + if (mpi_cmp (diff, mindiff) < 0) + { + if (testparms) goto err; + goto qloop; + } + + mpi_sub_ui (q1, q, 1); + if (mpi_gcd (g, q1, e)) + { + if (_gcry_fips186_4_prime_check (q, pbits) != GPG_ERR_NO_ERROR) + { + /* not a prime */ + if (testparms) goto err; + } + else + break; + } + else if (testparms) goto err; + } + if (i >= 5 * pbits) + goto err; + + if (testparms) + { + mpi_clear (p); + mpi_clear (q); + } + else + { + gcry_mpi_t f; + gcry_mpi_t phi; + + f = mpi_snew (nbits); + phi = mpi_snew (nbits); + + if (pqswitch) + { + mpi_swap(p, q); + } + + /* calculate the modulus */ + mpi_mul(n, p, q); + + /* Compute the Euler totient: phi = (p-1)(q-1) */ + mpi_mul (phi, p1, q1); + + /* Compute: f = lcm(p-1,q-1) = phi / gcd(p-1,q-1) */ + mpi_gcd (g, p1, q1); + mpi_fdiv_q (f, phi, g); + _gcry_mpi_release (phi); phi = NULL; + + /* Compute the secret key: d = e^{-1} mod lcm(p-1,q-1) */ + mpi_invm (d, e, f); + _gcry_mpi_release (f); + + if (mpi_get_nbits (d) < pbits) goto retry; + + /* calculate the inverse of p and q (used for chinese remainder theorem)*/ + mpi_invm(u, p, q ); + } + + ec = 0; + + if( DBG_CIPHER ) + { + log_mpidump(" p= ", p ); + log_mpidump(" q= ", q ); + log_mpidump(" n= ", n ); + log_mpidump(" e= ", e ); + log_mpidump(" d= ", d ); + log_mpidump(" u= ", u ); + } + +err: + + _gcry_mpi_release (p1); + _gcry_mpi_release (q1); + _gcry_mpi_release (g); + _gcry_mpi_release (minp); + _gcry_mpi_release (mindiff); + _gcry_mpi_release (diff); + + sk->n = n; + sk->e = e; + sk->p = p; + sk->q = q; + sk->d = d; + sk->u = u; + + /* Now we can test our keys. */ + if (ec || (!testparms && test_keys (sk, nbits - 64))) + { + _gcry_mpi_release (sk->n); sk->n = NULL; + _gcry_mpi_release (sk->e); sk->e = NULL; + _gcry_mpi_release (sk->p); sk->p = NULL; + _gcry_mpi_release (sk->q); sk->q = NULL; + _gcry_mpi_release (sk->d); sk->d = NULL; + _gcry_mpi_release (sk->u); sk->u = NULL; + if (!ec) + { + fips_signal_error ("self-test after key generation failed"); + return GPG_ERR_SELFTEST_FAILED; + } + } + + return ec; +} + + static gpg_err_code_t fips_186_4_prime_check(gcry_mpi_t x, unsigned int nbits, gcry_mpi_t e) { @@ -441,6 +714,8 @@ fips_186_4_prime_check(gcry_mpi_t x, uns return rc; } + + /* Variant of the standard key generation code using the algorithm from X9.31. Using this algorithm has the advantage that the generation can be made deterministic which is required for CAVS @@ -913,7 +1188,7 @@ rsa_generate (const gcry_sexp_t genparms } } - if (deriveparms || (flags & PUBKEY_FLAG_USE_X931) || fips_mode ()) + if (deriveparms || (flags & PUBKEY_FLAG_USE_X931)) { int swapped; ec = generate_x931 (&sk, nbits, evalue, deriveparms, &swapped); @@ -933,9 +1208,16 @@ rsa_generate (const gcry_sexp_t genparms sexp_release (l1); } } + deriveparms = (genparms? + sexp_find_token (genparms, "test-parms", 0) : NULL); + /* Generate. */ - ec = generate_std (&sk, nbits, evalue, - !!(flags & PUBKEY_FLAG_TRANSIENT_KEY)); + if (deriveparms || fips_mode()) + ec = generate_fips (&sk, nbits, evalue, deriveparms, 0); + else + ec = generate_std (&sk, nbits, evalue, !!(flags & PUBKEY_FLAG_TRANSIENT_KEY)); + + sexp_release (deriveparms); } if (!ec) Index: libgcrypt-1.6.1/cipher/primegen.c =================================================================== --- libgcrypt-1.6.1.orig/cipher/primegen.c 2015-02-16 16:43:58.418615762 +0100 +++ libgcrypt-1.6.1/cipher/primegen.c 2015-02-16 17:54:47.425359088 +0100 @@ -913,6 +913,22 @@ check_prime( gcry_mpi_t prime, gcry_mpi_ return 0; } +/* Check whether the number X is prime according to FIPS 186-4 table C.2. */ +gcry_err_code_t +_gcry_fips186_4_prime_check (gcry_mpi_t x, unsigned int bits) +{ + gcry_err_code_t ec = GPG_ERR_NO_ERROR; + gcry_mpi_t val_2 = mpi_alloc_set_ui (2); +/* Used by the Fermat test. */ + + /* We use 5 or 4 rounds as specified in table C.2 */ + if (! check_prime (x, val_2, bits > 1024 ? 4 : 5, NULL, NULL)) + ec = GPG_ERR_NO_PRIME; + + mpi_free (val_2); + + return ec; +} /* * Return true if n is probably a prime
Locations
Projects
Search
Status Monitor
Help
OpenBuildService.org
Documentation
API Documentation
Code of Conduct
Contact
Support
@OBShq
Terms
openSUSE Build Service is sponsored by
The Open Build Service is an
openSUSE project
.
Sign Up
Log In
Places
Places
All Projects
Status Monitor