Sign Up
Log In
Log In
or
Sign Up
Places
All Projects
Status Monitor
Collapse sidebar
SUSE:SLE-15-SP4:GA
openssl-3
openssl-CVE-2022-0778.patch
Overview
Repositories
Revisions
Requests
Users
Attributes
Meta
File openssl-CVE-2022-0778.patch of Package openssl-3
From cafcc62d7719dea73f334c9ef763d1e215fcd94d Mon Sep 17 00:00:00 2001 From: Tomas Mraz <tomas@openssl.org> Date: Mon, 28 Feb 2022 18:26:21 +0100 Subject: [PATCH] Fix possible infinite loop in BN_mod_sqrt() The calculation in some cases does not finish for non-prime p. This fixes CVE-2022-0778. Based on patch by David Benjamin <davidben@google.com>. --- crypto/bn/bn_sqrt.c | 30 ++++++++++++++++++------------ 1 file changed, 18 insertions(+), 12 deletions(-) diff --git a/crypto/bn/bn_sqrt.c b/crypto/bn/bn_sqrt.c index b663ae5ec5..c5ea7ab194 100644 --- a/crypto/bn/bn_sqrt.c +++ b/crypto/bn/bn_sqrt.c @@ -14,7 +14,8 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) /* * Returns 'ret' such that ret^2 == a (mod p), using the Tonelli/Shanks * algorithm (cf. Henri Cohen, "A Course in Algebraic Computational Number - * Theory", algorithm 1.5.1). 'p' must be prime! + * Theory", algorithm 1.5.1). 'p' must be prime, otherwise an error or + * an incorrect "result" will be returned. */ { BIGNUM *ret = in; @@ -303,18 +304,23 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) goto vrfy; } - /* find smallest i such that b^(2^i) = 1 */ - i = 1; - if (!BN_mod_sqr(t, b, p, ctx)) - goto end; - while (!BN_is_one(t)) { - i++; - if (i == e) { - ERR_raise(ERR_LIB_BN, BN_R_NOT_A_SQUARE); - goto end; + /* Find the smallest i, 0 < i < e, such that b^(2^i) = 1. */ + for (i = 1; i < e; i++) { + if (i == 1) { + if (!BN_mod_sqr(t, b, p, ctx)) + goto end; + + } else { + if (!BN_mod_mul(t, t, t, p, ctx)) + goto end; } - if (!BN_mod_mul(t, t, t, p, ctx)) - goto end; + if (BN_is_one(t)) + break; + } + /* If not found, a is not a square or p is not prime. */ + if (i >= e) { + ERR_raise(ERR_LIB_BN, BN_R_NOT_A_SQUARE); + goto end; } /* t := y^2^(e - i - 1) */
Locations
Projects
Search
Status Monitor
Help
OpenBuildService.org
Documentation
API Documentation
Code of Conduct
Contact
Support
@OBShq
Terms
openSUSE Build Service is sponsored by
The Open Build Service is an
openSUSE project
.
Sign Up
Log In
Places
Places
All Projects
Status Monitor