Sign Up
Log In
Log In
or
Sign Up
Places
All Projects
Status Monitor
Collapse sidebar
Please login to access the resource
openSUSE:Factory
python-datashader
python-datashader.spec
Overview
Repositories
Revisions
Requests
Users
Attributes
Meta
File python-datashader.spec of Package python-datashader
# # spec file for package python-datashader # # Copyright (c) 2024 SUSE LLC # # All modifications and additions to the file contributed by third parties # remain the property of their copyright owners, unless otherwise agreed # upon. The license for this file, and modifications and additions to the # file, is the same license as for the pristine package itself (unless the # license for the pristine package is not an Open Source License, in which # case the license is the MIT License). An "Open Source License" is a # license that conforms to the Open Source Definition (Version 1.9) # published by the Open Source Initiative. # Please submit bugfixes or comments via https://bugs.opensuse.org/ # %global flavor @BUILD_FLAVOR@%{nil} %if "%{flavor}" == "test" %define psuffix -test ExclusiveArch: x86_64 %bcond_without test %else %define psuffix %{nil} %bcond_with test BuildArch: noarch %endif %{?sle15_python_module_pythons} Name: python-datashader%{psuffix} Version: 0.16.3 Release: 0 Summary: Data visualization toolchain based on aggregating into a grid License: BSD-3-Clause URL: https://datashader.org # SourceRepository: https://github.com/holoviz/datashader Source0: https://files.pythonhosted.org/packages/source/d/datashader/datashader-%{version}.tar.gz Source100: python-datashader-rpmlintrc BuildRequires: %{python_module param} BuildRequires: %{python_module pip} BuildRequires: %{python_module pyct} BuildRequires: %{python_module setuptools} BuildRequires: %{python_module wheel} BuildRequires: fdupes BuildRequires: python-rpm-macros Requires: python-Pillow Requires: python-colorcet Requires: python-dask-dataframe Requires: python-multipledispatch Requires: python-numba Requires: python-numpy Requires: python-packaging Requires: python-pandas Requires: python-param Requires: python-pyct Requires: python-requests Requires: python-scipy Requires: python-toolz Requires: python-xarray Requires(post): update-alternatives Requires(postun): update-alternatives %if %{with test} BuildRequires: %{python_module bokeh >= 3.1} BuildRequires: %{python_module dask-expr} BuildRequires: %{python_module datashader = %{version}} BuildRequires: %{python_module fastparquet} BuildRequires: %{python_module matplotlib >= 3.3} BuildRequires: %{python_module nbconvert} BuildRequires: %{python_module nbformat} BuildRequires: %{python_module nbsmoke >= 0.5.0} BuildRequires: %{python_module netCDF4} BuildRequires: %{python_module pyarrow} BuildRequires: %{python_module pytest-xdist} BuildRequires: %{python_module pytest} BuildRequires: %{python_module scikit-image} %endif %python_subpackages %description Traditional visualization systems treat plotting as a unitary process transforming incoming data into an onscreen or printed image, with parameters that can be specified beforehand that affect the final result. While this approach works for small collections of data that can be viewed in their entirety, the visualization for large datasets is often the only way to understand what the data consists of, and there is no objective way to set the parameters to reveal this data. The datashader library breaks up the rendering pipeline into a series of stages where user-defined computations can be performed, allowing the visualization to adapt to and reveal the underlying properties of the dataset, i.e. the datashader pipeline allows computation *on the visualization*, not just on the dataset, allowing it to do automatic ranging and scaling that takes the current visualization constraints into account. For instance, where a traditional system would use a transparency/opacity parameter to show the density of overlapping points in a scatterplot, datashader can automatically calculate how many datapoints are mapped to each pixel, scaling the representation to accurately convey the data at every location, with no saturation, overplotting, or underplotting issues. %prep %autosetup -p1 -n datashader-%{version} sed -i -e '/^#!\//, 1d' examples/*.py chmod -x examples/getting_started/2_Pipeline.ipynb sed -i 's/"--color=yes"//' pyproject.toml %build %pyproject_wheel %install %if ! %{with test} %pyproject_install %python_clone -a %{buildroot}%{_bindir}/datashader %{python_expand %fdupes %{buildroot}%{$python_sitelib} chmod a-x %{buildroot}%{$python_sitelib}/datashader/examples/filetimes.py } %endif %if %{with test} %check export PYTHONPATH=examples # skip known failing test with latest dask gh#holoviz/datashader#1032 donttest="test_raster_quadmesh_autorange_reversed[dask.array]" %pytest datashader/tests --doctest-modules --doctest-ignore-import-errors -n auto -rsfE -k "not $donttest" %endif %if ! %{with test} %post %python_install_alternative datashader %postun %python_uninstall_alternative datashader %files %{python_files} %doc README.md %license LICENSE.txt %python_alternative %{_bindir}/datashader %{python_sitelib}/datashader %{python_sitelib}/datashader-%{version}.dist-info %endif %changelog
Locations
Projects
Search
Status Monitor
Help
OpenBuildService.org
Documentation
API Documentation
Code of Conduct
Contact
Support
@OBShq
Terms
openSUSE Build Service is sponsored by
The Open Build Service is an
openSUSE project
.
Sign Up
Log In
Places
Places
All Projects
Status Monitor