Sign Up
Log In
Log In
or
Sign Up
Places
All Projects
Status Monitor
Collapse sidebar
openSUSE:Leap:15.5:Update
openssl-1_1.28463
openssl-CVE-2022-4304-1of2.patch
Overview
Repositories
Revisions
Requests
Users
Attributes
Meta
File openssl-CVE-2022-4304-1of2.patch of Package openssl-1_1.28463
commit 0ee66695c4bcb209919d3c7ee88ce46440b29f46 Author: Matt Caswell <matt@openssl.org> Date: Fri Jan 20 15:26:54 2023 +0000 Fix Timing Oracle in RSA decryption A timing based side channel exists in the OpenSSL RSA Decryption implementation which could be sufficient to recover a ciphertext across a network in a Bleichenbacher style attack. To achieve a successful decryption an attacker would have to be able to send a very large number of trial messages for decryption. The vulnerability affects all RSA padding modes: PKCS#1 v1.5, RSA-OEAP and RSASVE. Patch written by Dmitry Belyavsky and Hubert Kario CVE-2022-4304 --- crypto/bn/bn_blind.c | 14 - crypto/bn/bn_lcl.h | 14 + crypto/err/openssl.txt | 3 crypto/rsa/build.info | 2 crypto/rsa/rsa_err.c | 3 crypto/rsa/rsa_ossl.c | 17 + crypto/rsa/rsa_sup_mul.c | 600 +++++++++++++++++++++++++++++++++++++++++++++++ crypto/rsa/rsa_sup_mul.h | 6 include/openssl/rsaerr.h | 9 9 files changed, 642 insertions(+), 26 deletions(-) --- a/crypto/bn/bn_blind.c +++ b/crypto/bn/bn_blind.c @@ -13,20 +13,6 @@ #define BN_BLINDING_COUNTER 32 -struct bn_blinding_st { - BIGNUM *A; - BIGNUM *Ai; - BIGNUM *e; - BIGNUM *mod; /* just a reference */ - CRYPTO_THREAD_ID tid; - int counter; - unsigned long flags; - BN_MONT_CTX *m_ctx; - int (*bn_mod_exp) (BIGNUM *r, const BIGNUM *a, const BIGNUM *p, - const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); - CRYPTO_RWLOCK *lock; -}; - BN_BLINDING *BN_BLINDING_new(const BIGNUM *A, const BIGNUM *Ai, BIGNUM *mod) { BN_BLINDING *ret = NULL; --- a/crypto/bn/bn_lcl.h +++ b/crypto/bn/bn_lcl.h @@ -263,6 +263,20 @@ struct bn_gencb_st { } cb; }; +struct bn_blinding_st { + BIGNUM *A; + BIGNUM *Ai; + BIGNUM *e; + BIGNUM *mod; /* just a reference */ + CRYPTO_THREAD_ID tid; + int counter; + unsigned long flags; + BN_MONT_CTX *m_ctx; + int (*bn_mod_exp) (BIGNUM *r, const BIGNUM *a, const BIGNUM *p, + const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); + CRYPTO_RWLOCK *lock; +}; + /*- * BN_window_bits_for_exponent_size -- macro for sliding window mod_exp functions * --- a/crypto/err/openssl.txt +++ b/crypto/err/openssl.txt @@ -1,4 +1,4 @@ -# Copyright 1999-2019 The OpenSSL Project Authors. All Rights Reserved. +# Copyright 1999-2023 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy @@ -1069,6 +1069,7 @@ RAND_F_RAND_POOL_GROW:125:rand_pool_grow RAND_F_RAND_POOL_NEW:116:rand_pool_new RAND_F_RAND_WRITE_FILE:112:RAND_write_file RSA_F_CHECK_PADDING_MD:140:check_padding_md +RSA_F_DO_UNBLIND:168:do_unblind RSA_F_ENCODE_PKCS1:146:encode_pkcs1 RSA_F_INT_RSA_VERIFY:145:int_rsa_verify RSA_F_OLD_RSA_PRIV_DECODE:147:old_rsa_priv_decode --- a/crypto/rsa/build.info +++ b/crypto/rsa/build.info @@ -3,4 +3,4 @@ SOURCE[../../libcrypto]=\ rsa_ossl.c rsa_gen.c rsa_lib.c rsa_sign.c rsa_saos.c rsa_err.c \ rsa_pk1.c rsa_ssl.c rsa_none.c rsa_oaep.c rsa_chk.c \ rsa_pss.c rsa_x931.c rsa_asn1.c rsa_depr.c rsa_ameth.c rsa_prn.c \ - rsa_pmeth.c rsa_crpt.c rsa_x931g.c rsa_meth.c rsa_mp.c + rsa_pmeth.c rsa_crpt.c rsa_x931g.c rsa_meth.c rsa_mp.c rsa_sup_mul.c --- a/crypto/rsa/rsa_err.c +++ b/crypto/rsa/rsa_err.c @@ -1,6 +1,6 @@ /* * Generated by util/mkerr.pl DO NOT EDIT - * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. + * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy @@ -15,6 +15,7 @@ static const ERR_STRING_DATA RSA_str_functs[] = { {ERR_PACK(ERR_LIB_RSA, RSA_F_CHECK_PADDING_MD, 0), "check_padding_md"}, + {ERR_PACK(ERR_LIB_RSA, RSA_F_DO_UNBLIND, 0), "do_unblind"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_ENCODE_PKCS1, 0), "encode_pkcs1"}, {ERR_PACK(ERR_LIB_RSA, RSA_F_FIPS_RSA_BUILTIN_KEYGEN, 0), "fips_rsa_builtin_keygen"}, --- a/crypto/rsa/rsa_ossl.c +++ b/crypto/rsa/rsa_ossl.c @@ -10,6 +10,7 @@ #include "internal/cryptlib.h" #include "internal/bn_int.h" #include "rsa_locl.h" +#include "rsa_sup_mul.h" #include "internal/constant_time_locl.h" #ifdef OPENSSL_FIPS @@ -523,11 +524,19 @@ static int rsa_ossl_private_decrypt(int BN_free(d); } - if (blinding) - if (!rsa_blinding_invert(blinding, ret, unblind, ctx)) + if (blinding) { + /* + * do_unblind combines blinding inversion and + * 0-padded BN BE serialization + */ + j = do_unblind(ret, blinding, unblind, rsa->n, ctx, buf, num); + if (j == 0) goto err; - - j = BN_bn2binpad(ret, buf, num); + } else { + j = BN_bn2binpad(ret, buf, num); + if (j < 0) + goto err; + } switch (padding) { case RSA_PKCS1_PADDING: --- /dev/null +++ b/crypto/rsa/rsa_sup_mul.c @@ -0,0 +1,600 @@ +#include <openssl/e_os2.h> +#include <stddef.h> +#include <sys/types.h> +#include <string.h> +#include "openssl/bn.h" +#include "rsa_sup_mul.h" +#include "crypto/bn/bn_lcl.h" +#include "internal/numbers.h" +#include "internal/constant_time_locl.h" +#include <openssl/err.h> +#include <openssl/rsaerr.h> + +# if BN_BYTES == 8 +typedef uint64_t limb_t; +# if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__ == 16 +/* nonstandard; implemented by gcc on 64-bit platforms */ +typedef __uint128_t limb2_t; +# define HAVE_LIMB2_T +# endif +# define LIMB_BIT_SIZE 64 +# define LIMB_BYTE_SIZE 8 +# elif BN_BYTES == 4 +typedef uint32_t limb_t; +typedef uint64_t limb2_t; +# define LIMB_BIT_SIZE 32 +# define LIMB_BYTE_SIZE 4 +# define HAVE_LIMB2_T +# else +# error "Not supported" +# endif + +/* + * For multiplication we're using schoolbook multiplication, + * so if we have two numbers, each with 6 "digits" (words) + * the multiplication is calculated as follows: + * A B C D E F + * x I J K L M N + * -------------- + * N*F + * N*E + * N*D + * N*C + * N*B + * N*A + * M*F + * M*E + * M*D + * M*C + * M*B + * M*A + * L*F + * L*E + * L*D + * L*C + * L*B + * L*A + * K*F + * K*E + * K*D + * K*C + * K*B + * K*A + * J*F + * J*E + * J*D + * J*C + * J*B + * J*A + * I*F + * I*E + * I*D + * I*C + * I*B + * + I*A + * ========================== + * N*B N*D N*F + * + N*A N*C N*E + * + M*B M*D M*F + * + M*A M*C M*E + * + L*B L*D L*F + * + L*A L*C L*E + * + K*B K*D K*F + * + K*A K*C K*E + * + J*B J*D J*F + * + J*A J*C J*E + * + I*B I*D I*F + * + I*A I*C I*E + * + * 1+1 1+3 1+5 + * 1+0 1+2 1+4 + * 0+1 0+3 0+5 + * 0+0 0+2 0+4 + * + * 0 1 2 3 4 5 6 + * which requires n^2 multiplications and 2n full length additions + * as we can keep every other result of limb multiplication in two separate + * limbs + */ + +#if defined HAVE_LIMB2_T +static ossl_inline void _mul_limb(limb_t *hi, limb_t *lo, limb_t a, limb_t b) +{ + limb2_t t; + /* + * this is idiomatic code to tell compiler to use the native mul + * those three lines will actually compile to single instruction + */ + + t = (limb2_t)a * b; + *hi = t >> LIMB_BIT_SIZE; + *lo = t & -1UL; +} +#elif (BN_BYTES == 8) && (defined _MSC_VER) +/* https://learn.microsoft.com/en-us/cpp/intrinsics/mul128?view=msvc-170 */ +#pragma intrinsic(_mul128) +static ossl_inline void _mul_limb(limb_t *hi, limb_t *lo, limb_t a, limb_t b) +{ + *lo = _mul128(a, b, hi); +} +#else +/* + * if the compiler doesn't have either a 128bit data type nor a "return + * high 64 bits of multiplication" + */ +static ossl_inline void _mul_limb(limb_t *hi, limb_t *lo, limb_t a, limb_t b) +{ + limb_t a_low = (limb_t)(uint32_t)a; + limb_t a_hi = a >> 32; + limb_t b_low = (limb_t)(uint32_t)b; + limb_t b_hi = b >> 32; + + limb_t p0 = a_low * b_low; + limb_t p1 = a_low * b_hi; + limb_t p2 = a_hi * b_low; + limb_t p3 = a_hi * b_hi; + + uint32_t cy = (uint32_t)(((p0 >> 32) + (uint32_t)p1 + (uint32_t)p2) >> 32); + + *lo = p0 + (p1 << 32) + (p2 << 32); + *hi = p3 + (p1 >> 32) + (p2 >> 32) + cy; +} +#endif + +/* add two limbs with carry in, return carry out */ +static ossl_inline limb_t _add_limb(limb_t *ret, limb_t a, limb_t b, limb_t carry) +{ + limb_t carry1, carry2, t; + /* + * `c = a + b; if (c < a)` is idiomatic code that makes compilers + * use add with carry on assembly level + */ + + *ret = a + carry; + if (*ret < a) + carry1 = 1; + else + carry1 = 0; + + t = *ret; + *ret = t + b; + if (*ret < t) + carry2 = 1; + else + carry2 = 0; + + return carry1 + carry2; +} + +/* + * add two numbers of the same size, return overflow + * + * add a to b, place result in ret; all arrays need to be n limbs long + * return overflow from addition (0 or 1) + */ +static ossl_inline limb_t add(limb_t *ret, limb_t *a, limb_t *b, size_t n) +{ + limb_t c = 0; + ossl_ssize_t i; + + for(i = n - 1; i > -1; i--) + c = _add_limb(&ret[i], a[i], b[i], c); + + return c; +} + +/* + * return number of limbs necessary for temporary values + * when multiplying numbers n limbs large + */ +static ossl_inline size_t mul_limb_numb(size_t n) +{ + return 2 * n * 2; +} + +/* + * multiply two numbers of the same size + * + * multiply a by b, place result in ret; a and b need to be n limbs long + * ret needs to be 2*n limbs long, tmp needs to be mul_limb_numb(n) limbs + * long + */ +static void limb_mul(limb_t *ret, limb_t *a, limb_t *b, size_t n, limb_t *tmp) +{ + limb_t *r_odd, *r_even; + size_t i, j, k; + + r_odd = tmp; + r_even = &tmp[2 * n]; + + memset(ret, 0, 2 * n * sizeof(limb_t)); + + for (i = 0; i < n; i++) { + for (k = 0; k < i + n + 1; k++) { + r_even[k] = 0; + r_odd[k] = 0; + } + for (j = 0; j < n; j++) { + /* + * place results from even and odd limbs in separate arrays so that + * we don't have to calculate overflow every time we get individual + * limb multiplication result + */ + if (j % 2 == 0) + _mul_limb(&r_even[i + j], &r_even[i + j + 1], a[i], b[j]); + else + _mul_limb(&r_odd[i + j], &r_odd[i + j + 1], a[i], b[j]); + } + /* + * skip the least significant limbs when adding multiples of + * more significant limbs (they're zero anyway) + */ + add(ret, ret, r_even, n + i + 1); + add(ret, ret, r_odd, n + i + 1); + } +} + +/* modifies the value in place by performing a right shift by one bit */ +static ossl_inline void rshift1(limb_t *val, size_t n) +{ + limb_t shift_in = 0, shift_out = 0; + size_t i; + + for (i = 0; i < n; i++) { + shift_out = val[i] & 1; + val[i] = shift_in << (LIMB_BIT_SIZE - 1) | (val[i] >> 1); + shift_in = shift_out; + } +} + +/* extend the LSB of flag to all bits of limb */ +static ossl_inline limb_t mk_mask(limb_t flag) +{ + flag |= flag << 1; + flag |= flag << 2; + flag |= flag << 4; + flag |= flag << 8; + flag |= flag << 16; +#if (LIMB_BYTE_SIZE == 8) + flag |= flag << 32; +#endif + return flag; +} + +/* + * copy from either a or b to ret based on flag + * when flag == 0, then copies from b + * when flag == 1, then copies from a + */ +static ossl_inline void cselect(limb_t flag, limb_t *ret, limb_t *a, limb_t *b, size_t n) +{ + /* + * would be more efficient with non volatile mask, but then gcc + * generates code with jumps + */ + volatile limb_t mask; + size_t i; + + mask = mk_mask(flag); + for (i = 0; i < n; i++) { +#if (LIMB_BYTE_SIZE == 8) + ret[i] = constant_time_select_64(mask, a[i], b[i]); +#else + ret[i] = constant_time_select_32(mask, a[i], b[i]); +#endif + } +} + +static limb_t _sub_limb(limb_t *ret, limb_t a, limb_t b, limb_t borrow) +{ + limb_t borrow1, borrow2, t; + /* + * while it doesn't look constant-time, this is idiomatic code + * to tell compilers to use the carry bit from subtraction + */ + + *ret = a - borrow; + if (*ret > a) + borrow1 = 1; + else + borrow1 = 0; + + t = *ret; + *ret = t - b; + if (*ret > t) + borrow2 = 1; + else + borrow2 = 0; + + return borrow1 + borrow2; +} + +/* + * place the result of a - b into ret, return the borrow bit. + * All arrays need to be n limbs long + */ +static limb_t sub(limb_t *ret, limb_t *a, limb_t *b, size_t n) +{ + limb_t borrow = 0; + ossl_ssize_t i; + + for (i = n - 1; i > -1; i--) + borrow = _sub_limb(&ret[i], a[i], b[i], borrow); + + return borrow; +} + +/* return the number of limbs necessary to allocate for the mod() tmp operand */ +static ossl_inline size_t mod_limb_numb(size_t anum, size_t modnum) +{ + return (anum + modnum) * 3; +} + +/* + * calculate a % mod, place the result in ret + * size of a is defined by anum, size of ret and mod is modnum, + * size of tmp is returned by mod_limb_numb() + */ +static void mod(limb_t *ret, limb_t *a, size_t anum, limb_t *mod, + size_t modnum, limb_t *tmp) +{ + limb_t *atmp, *modtmp, *rettmp; + limb_t res; + size_t i; + + memset(tmp, 0, mod_limb_numb(anum, modnum) * LIMB_BYTE_SIZE); + + atmp = tmp; + modtmp = &tmp[anum + modnum]; + rettmp = &tmp[(anum + modnum) * 2]; + + for (i = modnum; i <modnum + anum; i++) + atmp[i] = a[i-modnum]; + + for (i = 0; i < modnum; i++) + modtmp[i] = mod[i]; + + for (i = 0; i < anum * LIMB_BIT_SIZE; i++) { + rshift1(modtmp, anum + modnum); + res = sub(rettmp, atmp, modtmp, anum+modnum); + cselect(res, atmp, atmp, rettmp, anum+modnum); + } + + memcpy(ret, &atmp[anum], sizeof(limb_t) * modnum); +} + +/* necessary size of tmp for a _mul_add_limb() call with provided anum */ +static ossl_inline size_t _mul_add_limb_numb(size_t anum) +{ + return 2 * (anum + 1); +} + +/* multiply a by m, add to ret, return carry */ +static limb_t _mul_add_limb(limb_t *ret, limb_t *a, size_t anum, + limb_t m, limb_t *tmp) +{ + limb_t carry = 0; + limb_t *r_odd, *r_even; + size_t i; + + memset(tmp, 0, sizeof(limb_t) * (anum + 1) * 2); + + r_odd = tmp; + r_even = &tmp[anum + 1]; + + for (i = 0; i < anum; i++) { + /* + * place the results from even and odd limbs in separate arrays + * so that we have to worry about carry just once + */ + if (i % 2 == 0) + _mul_limb(&r_even[i], &r_even[i + 1], a[i], m); + else + _mul_limb(&r_odd[i], &r_odd[i + 1], a[i], m); + } + /* assert: add() carry here will be equal zero */ + add(r_even, r_even, r_odd, anum + 1); + /* + * while here it will not overflow as the max value from multiplication + * is -2 while max overflow from addition is 1, so the max value of + * carry is -1 (i.e. max int) + */ + carry = add(ret, ret, &r_even[1], anum) + r_even[0]; + + return carry; +} + +static ossl_inline size_t mod_montgomery_limb_numb(size_t modnum) +{ + return modnum * 2 + _mul_add_limb_numb(modnum); +} + +/* + * calculate a % mod, place result in ret + * assumes that a is in mongomery form with the R (Mongomery modulus) being + * smallest power of two big enough to fit mod and that's also a power + * of the count of number of bits in limb_t (B). + * For calculation, we also need n', such that mod * n' == -1 mod B. + * anum must be <= 2 * modnum + * ret needs to be modnum words long + * tmp needs to be mod_montgomery_limb_numb(modnum) limbs long + */ +static void mod_montgomery(limb_t *ret, limb_t *a, size_t anum, limb_t *mod, + size_t modnum, limb_t ni0, limb_t *tmp) +{ + limb_t carry, v; + limb_t *res, *rp, *tmp2; + ossl_ssize_t i; + + res = tmp; + /* + * for intermediate result we need an integer twice as long as modulus + * but keep the input in the least significant limbs + */ + memset(res, 0, sizeof(limb_t) * (modnum * 2)); + memcpy(&res[modnum * 2 - anum], a, sizeof(limb_t) * anum); + rp = &res[modnum]; + tmp2 = &res[modnum * 2]; + + carry = 0; + + /* add multiples of the modulus to the value until R divides it cleanly */ + for (i = modnum; i > 0; i--, rp--) { + v = _mul_add_limb(rp, mod, modnum, (rp[modnum-1] * ni0) & -1UL, tmp2); + v = (v + carry + rp[-1]) & -1UL; + carry |= (v != rp[-1]); + carry &= (v <= rp[-1]); + rp[-1] = v; + } + + /* perform the final reduction by mod... */ + carry -= sub(ret, rp, mod, modnum); + + /* ...conditionally */ + cselect(carry, ret, rp, ret, modnum); +} + +/* allocated buffer should be freed afterwards */ +static void BN_to_limb(const BIGNUM *bn, limb_t *buf, size_t limbs) +{ + int i; + int real_limbs = (BN_num_bytes(bn) + LIMB_BYTE_SIZE - 1) / LIMB_BYTE_SIZE; + limb_t *ptr = buf + (limbs - real_limbs); + + for (i = 0; i < real_limbs; i++) + ptr[i] = bn->d[real_limbs - i - 1]; +} + +#if LIMB_BYTE_SIZE == 8 +static ossl_inline uint64_t be64(uint64_t host) +{ +#ifndef L_ENDIAN + return host; +#else + uint64_t big = 0; + big |= (host & 0xff00000000000000) >> 56; + big |= (host & 0x00ff000000000000) >> 40; + big |= (host & 0x0000ff0000000000) >> 24; + big |= (host & 0x000000ff00000000) >> 8; + big |= (host & 0x00000000ff000000) << 8; + big |= (host & 0x0000000000ff0000) << 24; + big |= (host & 0x000000000000ff00) << 40; + big |= (host & 0x00000000000000ff) << 56; + return big; +#endif +} + +#else +/* Not all platforms have htobe32(). */ +static ossl_inline uint32_t be32(uint32_t host) +{ +#ifndef L_ENDIAN + return host; +#else + uint32_t big = 0; + big |= (host & 0xff000000) >> 24; + big |= (host & 0x00ff0000) >> 8; + big |= (host & 0x0000ff00) << 8; + big |= (host & 0x000000ff) << 24; + return big; +#endif +} +#endif + +/* + * We assume that intermediate, possible_arg2, blinding, and ctx are used + * similar to BN_BLINDING_invert_ex() arguments. + * to_mod is RSA module + * buf and num is the serialization buffer and its length. + * + * Here we use classic/Mongomery multiplication and modulo. After the calculation finished + * we serialize the new structure instead of BIGNUMs taking endianness into account. + */ +int do_unblind(const BIGNUM *intermediate, const BN_BLINDING *blinding, const BIGNUM *possible_arg2, + const BIGNUM *to_mod, BN_CTX *ctx, unsigned char *buf, int num) +{ + limb_t *l_im = NULL, *l_mul = NULL, *l_mod = NULL; + limb_t *l_ret = NULL, *l_tmp = NULL, l_buf; + size_t l_im_count = 0, l_mul_count = 0, l_size = 0, l_mod_count = 0; + size_t l_tmp_count = 0; + int ret = 0; + size_t i; + unsigned char *tmp; + const BIGNUM *arg1 = intermediate; + const BIGNUM *arg2 = (possible_arg2 == NULL) ? blinding->Ai : possible_arg2; + + l_im_count = (BN_num_bytes(arg1) + LIMB_BYTE_SIZE - 1) / LIMB_BYTE_SIZE; + l_mul_count = (BN_num_bytes(arg2) + LIMB_BYTE_SIZE - 1) / LIMB_BYTE_SIZE; + l_mod_count = (BN_num_bytes(to_mod) + LIMB_BYTE_SIZE - 1) / LIMB_BYTE_SIZE; + + l_size = l_im_count > l_mul_count ? l_im_count : l_mul_count; + l_im = OPENSSL_zalloc(l_size * LIMB_BYTE_SIZE); + l_mul = OPENSSL_zalloc(l_size * LIMB_BYTE_SIZE); + l_mod = OPENSSL_zalloc(l_mod_count * LIMB_BYTE_SIZE); + + if ((l_im == NULL) || (l_mul == NULL) || (l_mod == NULL)) + goto err; + + BN_to_limb(arg1, l_im, l_size); + BN_to_limb(arg2, l_mul, l_size); + BN_to_limb(to_mod, l_mod, l_mod_count); + + l_ret = OPENSSL_malloc(2 * l_size * LIMB_BYTE_SIZE); + + if (blinding->m_ctx != NULL) { + l_tmp_count = mul_limb_numb(l_size) > mod_montgomery_limb_numb(l_mod_count) ? + mul_limb_numb(l_size) : mod_montgomery_limb_numb(l_mod_count); + l_tmp = OPENSSL_malloc(l_tmp_count * LIMB_BYTE_SIZE); + } else { + l_tmp_count = mul_limb_numb(l_size) > mod_limb_numb(2 * l_size, l_mod_count) ? + mul_limb_numb(l_size) : mod_limb_numb(2 * l_size, l_mod_count); + l_tmp = OPENSSL_malloc(l_tmp_count * LIMB_BYTE_SIZE); + } + + if ((l_ret == NULL) || (l_tmp == NULL)) + goto err; + + if (blinding->m_ctx != NULL) { + limb_mul(l_ret, l_im, l_mul, l_size, l_tmp); + mod_montgomery(l_ret, l_ret, 2 * l_size, l_mod, l_mod_count, + blinding->m_ctx->n0[0], l_tmp); + } else { + limb_mul(l_ret, l_im, l_mul, l_size, l_tmp); + mod(l_ret, l_ret, 2 * l_size, l_mod, l_mod_count, l_tmp); + } + + /* module size in bytes can be equal to num but after limbs conversion it becomes bigger */ + if (num < BN_num_bytes(to_mod)) { + RSAerr(RSA_F_DO_UNBLIND, ERR_R_PASSED_INVALID_ARGUMENT); + goto err; + } + + memset(buf, 0, num); + tmp = buf + num - BN_num_bytes(to_mod); + for (i = 0; i < l_mod_count; i++) { +#if LIMB_BYTE_SIZE == 8 + l_buf = be64(l_ret[i]); +#else + l_buf = be32(l_ret[i]); +#endif + if (i == 0) { + int delta = LIMB_BYTE_SIZE - ((l_mod_count * LIMB_BYTE_SIZE) - num); + + memcpy(tmp, ((char *)&l_buf) + LIMB_BYTE_SIZE - delta, delta); + tmp += delta; + } else { + memcpy(tmp, &l_buf, LIMB_BYTE_SIZE); + tmp += LIMB_BYTE_SIZE; + } + } + ret = num; + + err: + OPENSSL_free(l_im); + OPENSSL_free(l_mul); + OPENSSL_free(l_mod); + OPENSSL_free(l_tmp); + OPENSSL_free(l_ret); + + return ret; +} --- /dev/null +++ b/crypto/rsa/rsa_sup_mul.h @@ -0,0 +1,6 @@ +#ifndef OSSL_CRYPTO_RSA_SUP_MUL_H +#define OSSL_CRYPTO_RSA_SUP_MUL_H + +int do_unblind(const BIGNUM *intermediate, const BN_BLINDING *blinding, const BIGNUM *possible_arg2, + const BIGNUM *to_mod, BN_CTX *ctx, unsigned char *buf, int num); +#endif /* OSSL_CRYPTO_RSA_SUP_MUL_H */ --- a/include/openssl/rsaerr.h +++ b/include/openssl/rsaerr.h @@ -1,6 +1,6 @@ /* * Generated by util/mkerr.pl DO NOT EDIT - * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. + * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy @@ -11,9 +11,7 @@ #ifndef HEADER_RSAERR_H # define HEADER_RSAERR_H -# ifndef HEADER_SYMHACKS_H -# include <openssl/symhacks.h> -# endif +# include <openssl/symhacks.h> # ifdef __cplusplus extern "C" @@ -24,6 +22,7 @@ int ERR_load_RSA_strings(void); * RSA function codes. */ # define RSA_F_CHECK_PADDING_MD 140 +# define RSA_F_DO_UNBLIND 168 # define RSA_F_ENCODE_PKCS1 146 # define RSA_F_FIPS_RSA_BUILTIN_KEYGEN 206 # define RSA_F_INT_RSA_VERIFY 145 @@ -139,8 +138,8 @@ int ERR_load_RSA_strings(void); # define RSA_R_KEY_PRIME_NUM_INVALID 165 # define RSA_R_KEY_SIZE_TOO_SMALL 120 # define RSA_R_LAST_OCTET_INVALID 134 -# define RSA_R_MISSING_PRIVATE_KEY 179 # define RSA_R_MGF1_DIGEST_NOT_ALLOWED 152 +# define RSA_R_MISSING_PRIVATE_KEY 179 # define RSA_R_MODULUS_TOO_LARGE 105 # define RSA_R_MP_COEFFICIENT_NOT_INVERSE_OF_R 168 # define RSA_R_MP_EXPONENT_NOT_CONGRUENT_TO_D 169
Locations
Projects
Search
Status Monitor
Help
OpenBuildService.org
Documentation
API Documentation
Code of Conduct
Contact
Support
@OBShq
Terms
openSUSE Build Service is sponsored by
The Open Build Service is an
openSUSE project
.
Sign Up
Log In
Places
Places
All Projects
Status Monitor