Sign Up
Log In
Log In
or
Sign Up
Places
All Projects
Status Monitor
Collapse sidebar
openSUSE:Step:15-SP4
python-pycryptodome.32676
CVE-2023-52323-side_channel-RSA_decrypt.patch
Overview
Repositories
Revisions
Requests
Users
Attributes
Meta
File CVE-2023-52323-side_channel-RSA_decrypt.patch of Package python-pycryptodome.32676
From afb5e27a15efe59e33c2825d40ef44995c13b8bc Mon Sep 17 00:00:00 2001 From: Helder Eijs <helderijs@gmail.com> Date: Wed, 20 Dec 2023 20:46:08 +0100 Subject: [PATCH] Fix side-channel leakage in RSA decryption --- lib/Crypto/Cipher/PKCS1_OAEP.py | 6 - lib/Crypto/Cipher/PKCS1_v1_5.py | 6 - lib/Crypto/Math/_IntegerBase.py | 20 +++ lib/Crypto/Math/_IntegerBase.pyi | 4 lib/Crypto/Math/_IntegerCustom.py | 56 +++++++++- lib/Crypto/Math/_IntegerGMP.py | 20 +++ lib/Crypto/Math/_IntegerNative.py | 12 ++ lib/Crypto/PublicKey/RSA.py | 10 + lib/Crypto/SelfTest/Math/__init__.py | 2 lib/Crypto/SelfTest/Math/test_Numbers.py | 28 +++++ lib/Crypto/SelfTest/Math/test_modmult.py | 120 +++++++++++++++++++++++ lib/Crypto/SelfTest/PublicKey/test_RSA.py | 4 lib/Crypto/SelfTest/PublicKey/test_import_RSA.py | 6 - lib/Crypto/Signature/pkcs1_15.py | 9 - lib/Crypto/Signature/pss.py | 11 +- src/modexp.c | 68 ++++++++++++- 16 files changed, 349 insertions(+), 33 deletions(-) create mode 100644 lib/Crypto/SelfTest/Math/test_modmult.py --- a/lib/Crypto/Cipher/PKCS1_OAEP.py +++ b/lib/Crypto/Cipher/PKCS1_OAEP.py @@ -167,10 +167,8 @@ class PKCS1OAEP_Cipher: raise ValueError("Ciphertext with incorrect length.") # Step 2a (O2SIP) ct_int = bytes_to_long(ciphertext) - # Step 2b (RSADP) - m_int = self._key._decrypt(ct_int) - # Complete step 2c (I2OSP) - em = long_to_bytes(m_int, k) + # Step 2b (RSADP) and step 2c (I2OSP) + em = self._key._decrypt(ct_int) # Step 3a lHash = self._hashObj.new(self._label).digest() # Step 3b --- a/lib/Crypto/Cipher/PKCS1_v1_5.py +++ b/lib/Crypto/Cipher/PKCS1_v1_5.py @@ -165,10 +165,8 @@ class PKCS115_Cipher: raise ValueError("Ciphertext with incorrect length.") # Step 2a (O2SIP) ct_int = bytes_to_long(ciphertext) - # Step 2b (RSADP) - m_int = self._key._decrypt(ct_int) - # Complete step 2c (I2OSP) - em = long_to_bytes(m_int, k) + # Step 2b (RSADP) and Step 2c (I2OSP) + em = self._key._decrypt(ct_int) # Step 3 sep = em.find(b'\x00', 2) if not em.startswith(b'\x00\x02') or sep < 10: --- a/lib/Crypto/Math/_IntegerBase.py +++ b/lib/Crypto/Math/_IntegerBase.py @@ -390,3 +390,23 @@ class IntegerBase(ABC): ) return norm_candidate + min_inclusive + @staticmethod + @abc.abstractmethod + def _mult_modulo_bytes(term1, term2, modulus): + """Multiply two integers, take the modulo, and encode as big endian. + This specialized method is used for RSA decryption. + + Args: + term1 : integer + The first term of the multiplication, non-negative. + term2 : integer + The second term of the multiplication, non-negative. + modulus: integer + The modulus, a positive odd number. + :Returns: + A byte string, with the result of the modular multiplication + encoded in big endian mode. + It is as long as the modulus would be, with zero padding + on the left if needed. + """ + pass --- a/lib/Crypto/Math/_IntegerBase.pyi +++ b/lib/Crypto/Math/_IntegerBase.pyi @@ -58,4 +58,8 @@ class IntegerBase: def random(cls, **kwargs: Union[int,RandFunc]) -> IntegerBase : ... @classmethod def random_range(cls, **kwargs: Union[int,RandFunc]) -> IntegerBase : ... + @staticmethod + def _mult_modulo_bytes(term1: Union[IntegerBase, int], + term2: Union[IntegerBase, int], + modulus: Union[IntegerBase, int]) -> bytes: ... --- a/lib/Crypto/Math/_IntegerCustom.py +++ b/lib/Crypto/Math/_IntegerCustom.py @@ -41,12 +41,18 @@ from Crypto.Util._raw_api import (load_p from Crypto.Random.random import getrandbits c_defs = """ -int monty_pow(const uint8_t *base, - const uint8_t *exp, - const uint8_t *modulus, - uint8_t *out, - size_t len, - uint64_t seed); +int monty_pow(uint8_t *out, + const uint8_t *base, + const uint8_t *exp, + const uint8_t *modulus, + size_t len, + uint64_t seed); + +int monty_multiply(uint8_t *out, + const uint8_t *term1, + const uint8_t *term2, + const uint8_t *modulus, + size_t len); """ @@ -109,3 +115,41 @@ class IntegerCustom(IntegerNative): result = bytes_to_long(get_raw_buffer(out)) self._value = result return self + + @staticmethod + def _mult_modulo_bytes(term1, term2, modulus): + + # With modular reduction + mod_value = int(modulus) + if mod_value < 0: + raise ValueError("Modulus must be positive") + if mod_value == 0: + raise ZeroDivisionError("Modulus cannot be zero") + + # C extension only works with odd moduli + if (mod_value & 1) == 0: + raise ValueError("Odd modulus is required") + + # C extension only works with non-negative terms smaller than modulus + if term1 >= mod_value or term1 < 0: + term1 %= mod_value + if term2 >= mod_value or term2 < 0: + term2 %= mod_value + + modulus_b = long_to_bytes(mod_value) + numbers_len = len(modulus_b) + term1_b = long_to_bytes(term1, numbers_len) + term2_b = long_to_bytes(term2, numbers_len) + out = create_string_buffer(numbers_len) + + error = _raw_montgomery.monty_multiply( + out, + term1_b, + term2_b, + modulus_b, + c_size_t(numbers_len) + ) + if error: + raise ValueError("monty_multiply failed with error: %d" % error) + + return get_raw_buffer(out) --- a/lib/Crypto/Math/_IntegerGMP.py +++ b/lib/Crypto/Math/_IntegerGMP.py @@ -695,6 +695,26 @@ class IntegerGMP(IntegerBase): raise ValueError("n must be positive even for the Jacobi symbol") return _gmp.mpz_jacobi(a._mpz_p, n._mpz_p) + @staticmethod + def _mult_modulo_bytes(term1, term2, modulus): + if not isinstance(term1, IntegerGMP): + term1 = IntegerGMP(term1) + if not isinstance(term2, IntegerGMP): + term2 = IntegerGMP(term2) + if not isinstance(modulus, IntegerGMP): + modulus = IntegerGMP(modulus) + + if modulus < 0: + raise ValueError("Modulus must be positive") + if modulus == 0: + raise ZeroDivisionError("Modulus cannot be zero") + if (modulus & 1) == 0: + raise ValueError("Odd modulus is required") + + numbers_len = len(modulus.to_bytes()) + result = ((term1 * term2) % modulus).to_bytes(numbers_len) + return result + # Clean-up def __del__(self): --- a/lib/Crypto/Math/_IntegerNative.py +++ b/lib/Crypto/Math/_IntegerNative.py @@ -378,3 +378,15 @@ class IntegerNative(IntegerBase): n1 = n % a1 # Step 8 return s * IntegerNative.jacobi_symbol(n1, a1) + + @staticmethod + def _mult_modulo_bytes(term1, term2, modulus): + if modulus < 0: + raise ValueError("Modulus must be positive") + if modulus == 0: + raise ZeroDivisionError("Modulus cannot be zero") + if (modulus & 1) == 0: + raise ValueError("Odd modulus is required") + + number_len = len(long_to_bytes(modulus)) + return long_to_bytes((term1 * term2) % modulus, number_len) --- a/lib/Crypto/PublicKey/RSA.py +++ b/lib/Crypto/PublicKey/RSA.py @@ -38,6 +38,7 @@ from Crypto import Random from Crypto.IO import PKCS8, PEM from Crypto.Util.py3compat import tobytes, bord, tostr from Crypto.Util.asn1 import DerSequence +from Crypto.Util.number import bytes_to_long from Crypto.Math.Numbers import Integer from Crypto.Math.Primality import (test_probable_prime, @@ -165,10 +166,11 @@ class RsaKey(object): h = (h * self._u) % self._q mp = h * self._p + m1 # Step 4: Compute m = m**(r-1) mod n - result = (r.inverse(self._n) * mp) % self._n - # Verify no faults occured - if ciphertext != pow(result, self._e, self._n): - raise ValueError("Fault detected in RSA decryption") + # then encode into a big endian byte string + result = Integer._mult_modulo_bytes( + r.inverse(self._n), + mp, + self._n) return result def has_private(self): --- a/lib/Crypto/SelfTest/Math/__init__.py +++ b/lib/Crypto/SelfTest/Math/__init__.py @@ -38,9 +38,11 @@ def get_tests(config={}): from Crypto.SelfTest.Math import test_Numbers from Crypto.SelfTest.Math import test_Primality from Crypto.SelfTest.Math import test_modexp + from Crypto.SelfTest.Math import test_modmult tests += test_Numbers.get_tests(config=config) tests += test_Primality.get_tests(config=config) tests += test_modexp.get_tests(config=config) + tests += test_modmult.get_tests(config=config) return tests if __name__ == '__main__': --- a/lib/Crypto/SelfTest/Math/test_Numbers.py +++ b/lib/Crypto/SelfTest/Math/test_Numbers.py @@ -672,6 +672,34 @@ class TestIntegerBase(unittest.TestCase) v1, = self.Integers(0x10) self.assertEqual(hex(v1), "0x10") + def test_mult_modulo_bytes(self): + modmult = self.Integer._mult_modulo_bytes + + res = modmult(4, 5, 19) + self.assertEqual(res, b'\x01') + + res = modmult(4 - 19, 5, 19) + self.assertEqual(res, b'\x01') + + res = modmult(4, 5 - 19, 19) + self.assertEqual(res, b'\x01') + + res = modmult(4 + 19, 5, 19) + self.assertEqual(res, b'\x01') + + res = modmult(4, 5 + 19, 19) + self.assertEqual(res, b'\x01') + + modulus = 2**512 - 1 # 64 bytes + t1 = 13**100 + t2 = 17**100 + expect = b"\xfa\xb2\x11\x87\xc3(y\x07\xf8\xf1n\xdepq\x0b\xca\xf3\xd3B,\xef\xf2\xfbf\xcc)\x8dZ*\x95\x98r\x96\xa8\xd5\xc3}\xe2q:\xa2'z\xf48\xde%\xef\t\x07\xbc\xc4[C\x8bUE2\x90\xef\x81\xaa:\x08" + self.assertEqual(expect, modmult(t1, t2, modulus)) + + self.assertRaises(ZeroDivisionError, modmult, 4, 5, 0) + self.assertRaises(ValueError, modmult, 4, 5, -1) + self.assertRaises(ValueError, modmult, 4, 5, 4) + class TestIntegerInt(TestIntegerBase): --- /dev/null +++ b/lib/Crypto/SelfTest/Math/test_modmult.py @@ -0,0 +1,120 @@ +# +# SelfTest/Math/test_modmult.py: Self-test for custom modular multiplication +# +# =================================================================== +# +# Copyright (c) 2023, Helder Eijs <helderijs@gmail.com> +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions +# are met: +# +# 1. Redistributions of source code must retain the above copyright +# notice, this list of conditions and the following disclaimer. +# 2. Redistributions in binary form must reproduce the above copyright +# notice, this list of conditions and the following disclaimer in +# the documentation and/or other materials provided with the +# distribution. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS +# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE +# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, +# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, +# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT +# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN +# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +# POSSIBILITY OF SUCH DAMAGE. +# =================================================================== + +"""Self-test for the custom modular multiplication""" + +import unittest + +from Crypto.SelfTest.st_common import list_test_cases + +from Crypto.Util.number import long_to_bytes, bytes_to_long + +from Crypto.Util._raw_api import (create_string_buffer, + get_raw_buffer, + c_size_t) + +from Crypto.Math._IntegerCustom import _raw_montgomery + + +class ExceptionModulus(ValueError): + pass + + +def monty_mult(term1, term2, modulus): + + if term1 >= modulus: + term1 %= modulus + if term2 >= modulus: + term2 %= modulus + + modulus_b = long_to_bytes(modulus) + numbers_len = len(modulus_b) + term1_b = long_to_bytes(term1, numbers_len) + term2_b = long_to_bytes(term2, numbers_len) + + out = create_string_buffer(numbers_len) + error = _raw_montgomery.monty_multiply( + out, + term1_b, + term2_b, + modulus_b, + c_size_t(numbers_len) + ) + + if error == 17: + raise ExceptionModulus() + if error: + raise ValueError("monty_multiply() failed with error: %d" % error) + + return get_raw_buffer(out) + + +modulus1 = 0xd66691b20071be4d66d4b71032b37fa007cfabf579fcb91e50bfc2753b3f0ce7be74e216aef7e26d4ae180bc20d7bd3ea88a6cbf6f87380e613c8979b5b043b200a8ff8856a3b12875e36e98a7569f3852d028e967551000b02c19e9fa52e83115b89309aabb1e1cf1e2cb6369d637d46775ce4523ea31f64ad2794cbc365dd8a35e007ed3b57695877fbf102dbeb8b3212491398e494314e93726926e1383f8abb5889bea954eb8c0ca1c62c8e9d83f41888095c5e645ed6d32515fe0c58c1368cad84694e18da43668c6f43e61d7c9bca633ddcda7aef5b79bc396d4a9f48e2a9abe0836cc455e435305357228e93d25aaed46b952defae0f57339bf26f5a9 + + +class TestModMultiply(unittest.TestCase): + + def test_small(self): + self.assertEqual(b"\x01", monty_mult(5, 6, 29)) + + def test_large(self): + numbers_len = (modulus1.bit_length() + 7) // 8 + + t1 = modulus1 // 2 + t2 = modulus1 - 90 + expect = b'\x00' * (numbers_len - 1) + b'\x2d' + self.assertEqual(expect, monty_mult(t1, t2, modulus1)) + + def test_zero_term(self): + numbers_len = (modulus1.bit_length() + 7) // 8 + expect = b'\x00' * numbers_len + self.assertEqual(expect, monty_mult(0x100, 0, modulus1)) + self.assertEqual(expect, monty_mult(0, 0x100, modulus1)) + + def test_larger_term(self): + t1 = 2**2047 + expect_int = 0x8edf4071f78e3d7ba622cdbbbef74612e301d69186776ae6bf87ff38c320d9aebaa64889c2f67de2324e6bccd2b10ad89e91fd21ba4bb523904d033eff5e70e62f01a84f41fa90a4f248ef249b82e1d2729253fdfc2a3b5b740198123df8bfbf7057d03e15244ad5f26eb9a099763b5c5972121ec076b0bf899f59bd95f7cc129abddccf24217bce52ca0f3a44c9ccc504765dbb89734205f3ae6a8cc560494a60ea84b27d8e00fa24bdd5b4f1d4232edb61e47d3d984c1fa50a3820a2e580fbc3fc8bc11e99df53b9efadf5a40ac75d384e400905aa6f1d88950cd53b1c54dc2222115ad84a27260fa4d978155c1434c551de1ee7361a17a2f79d4388f78a5d + res = bytes_to_long(monty_mult(t1, t1, modulus1)) + self.assertEqual(res, expect_int) + + +def get_tests(config={}): + tests = [] + tests += list_test_cases(TestModMultiply) + return tests + + +if __name__ == '__main__': + def suite(): + return unittest.TestSuite(get_tests()) + unittest.main(defaultTest='suite') --- a/lib/Crypto/SelfTest/PublicKey/test_RSA.py +++ b/lib/Crypto/SelfTest/PublicKey/test_RSA.py @@ -274,7 +274,7 @@ class RSATest(unittest.TestCase): ciphertext = bytes_to_long(a2b_hex(self.ciphertext)) # Test decryption - plaintext = rsaObj._decrypt(ciphertext) + plaintext = bytes_to_long(rsaObj._decrypt(ciphertext)) # Test encryption (2 arguments) new_ciphertext2 = rsaObj._encrypt(plaintext) @@ -299,7 +299,7 @@ class RSATest(unittest.TestCase): ciphertext = bytes_to_long(a2b_hex(self.ciphertext)) # Test plain decryption - new_plaintext = rsaObj._decrypt(ciphertext) + new_plaintext = bytes_to_long(rsaObj._decrypt(ciphertext)) self.assertEqual(plaintext, new_plaintext) --- a/lib/Crypto/SelfTest/PublicKey/test_import_RSA.py +++ b/lib/Crypto/SelfTest/PublicKey/test_import_RSA.py @@ -26,7 +26,7 @@ import re from Crypto.PublicKey import RSA from Crypto.SelfTest.st_common import * from Crypto.Util.py3compat import * -from Crypto.Util.number import inverse +from Crypto.Util.number import inverse, bytes_to_long from Crypto.Util import asn1 from Crypto.Util._file_system import pycryptodome_filename @@ -214,13 +214,13 @@ Lr7UkvEtFrRhDDKMtuIIq19FrL4pUIMymPMSLBn3 def testImportKey5(self): """Verifies that the imported key is still a valid RSA pair""" key = RSA.importKey(self.rsaKeyPEM) - idem = key._encrypt(key._decrypt(89)) + idem = key._encrypt(bytes_to_long(key._decrypt(89))) self.assertEqual(idem, 89) def testImportKey6(self): """Verifies that the imported key is still a valid RSA pair""" key = RSA.importKey(self.rsaKeyDER) - idem = key._encrypt(key._decrypt(65)) + idem = key._encrypt(bytes_to_long(key._decrypt(65))) self.assertEqual(idem, 65) def testImportKey7(self): --- a/lib/Crypto/Signature/pkcs1_15.py +++ b/lib/Crypto/Signature/pkcs1_15.py @@ -77,10 +77,11 @@ class PKCS115_SigScheme: em = _EMSA_PKCS1_V1_5_ENCODE(msg_hash, k) # Step 2a (OS2IP) em_int = bytes_to_long(em) - # Step 2b (RSASP1) - m_int = self._key._decrypt(em_int) - # Step 2c (I2OSP) - signature = long_to_bytes(m_int, k) + # Step 2b (RSASP1) and Step 2c (I2OSP) + signature = self._key._decrypt(em_int) + # Verify no faults occurred + if em_int != pow(bytes_to_long(signature), self._key.e, self._key.n): + raise ValueError("Fault detected in RSA private key operation") return signature def verify(self, msg_hash, signature): --- a/lib/Crypto/Signature/pss.py +++ b/lib/Crypto/Signature/pss.py @@ -107,10 +107,11 @@ class PSS_SigScheme: em = _EMSA_PSS_ENCODE(msg_hash, modBits-1, self._randfunc, mgf, sLen) # Step 2a (OS2IP) em_int = bytes_to_long(em) - # Step 2b (RSASP1) - m_int = self._key._decrypt(em_int) - # Step 2c (I2OSP) - signature = long_to_bytes(m_int, k) + # Step 2b (RSASP1) and Step 2c (I2OSP) + signature = self._key._decrypt(em_int) + # Verify no faults occurred + if em_int != pow(bytes_to_long(signature), self._key.e, self._key.n): + raise ValueError("Fault detected in RSA private key operation") return signature def verify(self, msg_hash, signature): @@ -178,7 +179,7 @@ def MGF1(mgfSeed, maskLen, hash_gen): :return: the mask, as a *byte string* """ - + T = b"" for counter in iter_range(ceil_div(maskLen, hash_gen.digest_size)): c = long_to_bytes(counter, 4) --- a/src/modexp.c +++ b/src/modexp.c @@ -179,6 +179,71 @@ cleanup: return res; } +/* + * Modular multiplication. All numbers are + * encoded in big endian form, possibly with + * zero padding on the left. + * + * @param out The memory area where to store the result + * @param term1 First term of the multiplication, strictly smaller than the modulus + * @param term2 Second term of the multiplication, strictly smaller than the modulus + * @param modulus Modulus, it must be odd + * @param len Size in bytes of out, term1, term2, and modulus + * @return 0 in case of success, the appropriate error code otherwise + */ +EXPORT_SYM int monty_multiply( + uint8_t *out, + const uint8_t *term1, + const uint8_t *term2, + const uint8_t *modulus, + size_t len) +{ + MontContext *ctx = NULL; + uint64_t *mont_term1 = NULL; + uint64_t *mont_term2 = NULL; + uint64_t *mont_output = NULL; + uint64_t *scratchpad = NULL; + int res; + + if (!term1 || !term2 || !modulus || !out) + return ERR_NULL; + + if (len == 0) + return ERR_NOT_ENOUGH_DATA; + + /* Allocations **/ + res = mont_context_init(&ctx, modulus, len); + if (res) + return res; + + res = mont_from_bytes(&mont_term1, term1, len, ctx); + if (res) goto cleanup; + + res = mont_from_bytes(&mont_term2, term2, len, ctx); + if (res) goto cleanup; + + res = mont_number(&mont_output, 1, ctx); + if (res) goto cleanup; + + res = mont_number(&scratchpad, SCRATCHPAD_NR, ctx); + if (res) goto cleanup; + + /* Multiply, then transform result back into big-endian, byte form **/ + res = mont_mult(mont_output, mont_term1, mont_term2, scratchpad, ctx); + if (res) goto cleanup; + + res = mont_to_bytes(out, len, mont_output, ctx); + +cleanup: + mont_context_free(ctx); + free(mont_term1); + free(mont_term2); + free(mont_output); + free(scratchpad); + + return res; +} + #ifdef MAIN int main(void) { @@ -205,7 +270,7 @@ int main(void) res = fread(out, 1, length, stdin); result = monty_pow(out, base, exponent, modulus, length, 12); - + free(base); free(modulus); free(exponent); @@ -232,5 +297,6 @@ int main(void) monty_pow(out, base, exponent, modulus, length, 12); } + monty_multiply(out, base, out, modulus, length); } #endif
Locations
Projects
Search
Status Monitor
Help
OpenBuildService.org
Documentation
API Documentation
Code of Conduct
Contact
Support
@OBShq
Terms
openSUSE Build Service is sponsored by
The Open Build Service is an
openSUSE project
.
Sign Up
Log In
Places
Places
All Projects
Status Monitor