repo for tensorflow 2.0
No description set
- Developed at science:machinelearning
-
2
derived packages
- Download package
-
Checkout Package
osc -A https://api.opensuse.org checkout openSUSE:Factory/tensorflow-lite && cd $_
- Create Badge
Refresh
Refresh
Source Files
Filename | Size | Changed |
---|---|---|
FP16.zip | 0000091462 89.3 KB | |
FXdiv.zip | 0000016626 16.2 KB | |
_constraints | 0000000243 243 Bytes | |
abseil-cpp.tar.gz | 0001774075 1.69 MB | |
arm_neon_2_x86_sse.tar.gz | 0000100612 98.3 KB | |
cpuinfo.tar.gz | 0003512335 3.35 MB | |
eigen.tar.gz | 0002711240 2.59 MB | |
farmhash.tar.gz | 0000467251 456 KB | |
fft2d.tgz | 0000110531 108 KB | |
flatbuffers.tar.gz | 0001724250 1.64 MB | |
gemmlowp.zip | 0000936866 915 KB | |
psimd.zip | 0000008327 8.13 KB | |
pthreadpool.zip | 0000061152 59.7 KB | |
ruy.zip | 0000379664 371 KB | |
tensorflow-2.10.0.tar.gz | 0066644994 63.6 MB | |
tensorflow-lite-cmake-find-python.patch | 0000001169 1.14 KB | |
tensorflow-lite.changes | 0000058352 57 KB | |
tensorflow-lite.spec | 0000011220 11 KB | |
xnnpack.zip | 0018406583 17.6 MB |
Revision 2 (latest revision is 4)
Dominique Leuenberger (dimstar_suse)
accepted
request 1005092
from
Benjamin Greiner (bnavigator)
(revision 2)
- Update to 2.10.0 * boo#1203507 (CVE-2022-35934) - Breaking Changes * Causal attention in keras.layers.Attention and keras.layers.AdditiveAttention is now specified in the call() method via the use_causal_mask argument (rather than in the constructor), for consistency with other layers. * Some files in tensorflow/python/training have been moved to tensorflow/python/tracking and tensorflow/python/checkpoint. Please update your imports accordingly, the old files will be removed in Release 2.11. * tf.keras.optimizers.experimental.Optimizer will graduate in Release 2.11, which means tf.keras.optimizers.Optimizer will be an alias of tf.keras.optimizers.experimental.Optimizer. The current tf.keras.optimizers.Optimizer will continue to be supported as tf.keras.optimizers.legacy.Optimizer, e.g.,tf.keras.optimizers.legacy.Adam. Most users won't be affected by this change, but please check the API doc if any API used in your workflow is changed or deprecated, and make adaptions. If you decide to keep using the old optimizer, please explicitly change your optimizer to tf.keras.optimizers.legacy.Optimizer. * RNG behavior change for tf.keras.initializers. Keras initializers will now use stateless random ops to generate random numbers. - Both seeded and unseeded initializers will always generate the same values every time they are called (for a given variable shape). For unseeded initializers (seed=None), a random seed will be created and assigned at initializer creation (different initializer instances get different (forwarded request 1005091 from bnavigator)
Comments 0